3 research outputs found

    Analysis of Tuberculosis using Smear Image

    Get PDF
    An automatic method for the detection of Tuberculosis (TB) bacilli from microscopic sputum smear images is presented in this paper. According to WHO, TB is the ninth leading cause of death all over the world. There are various techniques to diagnose TB, of which conventional microscopic sputum smear examination is considered. However, the mentioned method of diagnosis is time intensive and error prone, even in experienced hands. The proposed method performs detection of TB, by image binarization and subsequent classification of detected regions using a convolutional neural network. We have evaluated our gist algorithm using a dataset of sputum smear microscopic images with different backgrounds (high density and low-density images). Experimental results show that the proposed algorithm achieves for the TB detection. The proposed method automatically detects whether the sputum smear images is infected with TB or not. This method will aid clinicians to predict the disease accurately in a short span of time, thereby helping in improving the clinical outcome

    Tuberculosis Disease Detection through CXR Images based on Deep Neural Network Approach

    Get PDF
    Tuberculosis (TB) is a disease that, if left untreated for an extended period of time, can ultimately be fatal. Early TB detection can be aided by using a deep learning ensemble. In previous work, ensemble classifiers were only trained on images that shared similar characteristics. It is necessary for an ensemble to produce a diverse set of errors in order for it to be useful; this can be accomplished by making use of a number of different classifiers and/or features. In light of this, a brand-new framework has been constructed in this study for the purpose of segmenting and identifying TB in human Chest X-ray. It was determined that searching traditional web databases for chest X-ray was necessary. At this point, we pass the photos that we have collected over to Swin ResUnet3 so that they may be segmented. After the segmented chest X-ray have been provided to it, the Multi-scale Attention-based Densenet with Extreme Learning Machine (MAD-ELM) model will be applied in the detection stage in order to effectively diagnose tuberculosis from human chest X-ray. This will be done in order to maximize efficiency. Because it increased the variety of errors made by the basic classifiers, the supplied variation of the approach that was proposed was able to detect tuberculosis more effectively. The proposed ensemble method produced results with an accuracy of 94.2 percent, which are comparable to those obtained by past efforts
    corecore