2 research outputs found

    Putting the User at the Centre of the Grid: Simplifying Usability and Resource Selection for High Performance Computing

    Get PDF
    Computer simulation is finding a role in an increasing number of scientific disciplines, concomitant with the rise in available computing power. Realizing this inevitably re- quires access to computational power beyond the desktop, making use of clusters, supercomputers, data repositories, networks and distributed aggregations of these re- sources. Accessing one such resource entails a number of usability and security prob- lems; when multiple geographically distributed resources are involved, the difficulty is compounded. However, usability is an all too often neglected aspect of computing on e-infrastructures, although it is one of the principal factors militating against the widespread uptake of distributed computing. The usability problems are twofold: the user needs to know how to execute the applications they need to use on a particular resource, and also to gain access to suit- able resources to run their workloads as they need them. In this thesis we present our solutions to these two problems. Firstly we propose a new model of e-infrastructure resource interaction, which we call the user–application interaction model, designed to simplify executing application on high performance computing resources. We describe the implementation of this model in the Application Hosting Environment, which pro- vides a Software as a Service layer on top of distributed e-infrastructure resources. We compare the usability of our system with commonly deployed middleware tools using five usability metrics. Our middleware and security solutions are judged to be more usable than other commonly deployed middleware tools. We go on to describe the requirements for a resource trading platform that allows users to purchase access to resources within a distributed e-infrastructure. We present the implementation of this Resource Allocation Market Place as a distributed multi- agent system, and show how it provides a highly flexible, efficient tool to schedule workflows across high performance computing resources
    corecore