32,392 research outputs found

    Cryptanalysis and Improvement of a Flexible and Lightweight Group Authentication Scheme

    Get PDF
    Shamir’s secret sharing scheme is one of the substantial threshold primitives, based on which many security protocols are constructed such as group authentication schemes. Notwithstanding the unconditional security of Shamir\u27s secret sharing scheme, protocols that are designed based on this scheme do not necessarily inherit this property. In this work, we evaluate the security of a lightweight group authentication scheme, introduced for IoT networks in IEEE IoT Journal in 2020, and prove its weakness against the linear subspace attack, which is a recently-proposed cryptanalytical method for secret sharing-based schemes. Then, we propose an efficient and attack-resistant group authentication protocol for IoT networks

    Evolving Secret Sharing in Almost Semi-honest Model

    Get PDF
    Evolving secret sharing is a special kind of secret sharing where the number of shareholders is not known beforehand, i.e., at time t = 0. In classical secret sharing such a restriction was assumed inherently i.e., the the number of shareholders was given to the dealer’s algorithm as an input. Evolving secret sharing relaxes this condition. Pramanik and Adhikari left an open problem regarding malicious shareholders in the evolving setup, which we answer in this paper. We introduce a new cheating model, called the almost semi-honest model, where a shareholder who joins later can check the authenticity of share of previous ones. We use collision resistant hash function to construct such a secret sharing scheme with malicious node identification. Moreover, our scheme preserves the share size of Komargodski et al. (TCC 2016)

    Practical and Provably Secure Distributed Aggregation: Verifiable Additive Homomorphic Secret Sharing

    Get PDF
    Often clients (e.g., sensors, organizations) need to outsource joint computations that are based on some joint inputs to external untrusted servers. These computations often rely on the aggregation of data collected from multiple clients, while the clients want to guarantee that the results are correct and, thus, an output that can be publicly verified is required. However, important security and privacy challenges are raised, since clients may hold sensitive information. In this paper, we propose an approach, called verifiable additive homomorphic secret sharing (VAHSS), to achieve practical and provably secure aggregation of data, while allowing for the clients to protect their secret data and providing public verifiability i.e., everyone should be able to verify the correctness of the computed result. We propose three VAHSS constructions by combining an additive homomorphic secret sharing (HSS) scheme, for computing the sum of the clients\u27 secret inputs, and three different methods for achieving public verifiability, namely: (i) homomorphic collision-resistant hash functions; (ii) linear homomorphic signatures; as well as (iii) a threshold RSA signature scheme. In all three constructions, we provide a detailed correctness, security, and verifiability analysis and detailed experimental evaluations. Our results demonstrate the efficiency of our proposed constructions, especially from the client side

    Error-Detecting in Monotone Span Programs with Application to Communication Efficient Multi-Party Computation

    Get PDF
    Recent improvements in the state-of-the-art of MPC for non-full-threshold access structures introduced the idea of using a collision-resistant hash functions and redundancy in the secret-sharing scheme to construct a communication-efficient MPC protocol which is computationally-secure against malicious adversaries, with abort. The prior work is based on replicated secret-sharing; in this work we extend this methodology to {\em any} multiplicative LSSS implementing a Q2Q_2 access structure. To do so we need to establish a folklore property of error detection for such LSSS and their associated Monotone Span Programs. In doing so we obtain communication-efficient online and offline protocols for MPC in the pre-processing model

    On the Duality of Probing and Fault Attacks

    Get PDF
    In this work we investigate the problem of simultaneous privacy and integrity protection in cryptographic circuits. We consider a white-box scenario with a powerful, yet limited attacker. A concise metric for the level of probing and fault security is introduced, which is directly related to the capabilities of a realistic attacker. In order to investigate the interrelation of probing and fault security we introduce a common mathematical framework based on the formalism of information and coding theory. The framework unifies the known linear masking schemes. We proof a central theorem about the properties of linear codes which leads to optimal secret sharing schemes. These schemes provide the lower bound for the number of masks needed to counteract an attacker with a given strength. The new formalism reveals an intriguing duality principle between the problems of probing and fault security, and provides a unified view on privacy and integrity protection using error detecting codes. Finally, we introduce a new class of linear tamper-resistant codes. These are eligible to preserve security against an attacker mounting simultaneous probing and fault attacks
    • …
    corecore