57 research outputs found

    Emergence of Invariance and Disentanglement in Deep Representations

    Full text link
    Using established principles from Statistics and Information Theory, we show that invariance to nuisance factors in a deep neural network is equivalent to information minimality of the learned representation, and that stacking layers and injecting noise during training naturally bias the network towards learning invariant representations. We then decompose the cross-entropy loss used during training and highlight the presence of an inherent overfitting term. We propose regularizing the loss by bounding such a term in two equivalent ways: One with a Kullbach-Leibler term, which relates to a PAC-Bayes perspective; the other using the information in the weights as a measure of complexity of a learned model, yielding a novel Information Bottleneck for the weights. Finally, we show that invariance and independence of the components of the representation learned by the network are bounded above and below by the information in the weights, and therefore are implicitly optimized during training. The theory enables us to quantify and predict sharp phase transitions between underfitting and overfitting of random labels when using our regularized loss, which we verify in experiments, and sheds light on the relation between the geometry of the loss function, invariance properties of the learned representation, and generalization error.Comment: Deep learning, neural network, representation, flat minima, information bottleneck, overfitting, generalization, sufficiency, minimality, sensitivity, information complexity, stochastic gradient descent, regularization, total correlation, PAC-Baye

    Relative Flatness and Generalization

    Get PDF
    Flatness of the loss curve is conjectured to be connected to the generalization ability of machine learning models, in particular neural networks. While it has been empirically observed that flatness measures consistently correlate strongly with generalization, it is still an open theoretical problem why and under which circumstances flatness is connected to generalization, in particular in light of reparameterizations that change certain flatness measures but leave generalization unchanged. We investigate the connection between flatness and generalization by relating it to the interpolation from representative data, deriving notions of representativeness, and feature robustness. The notions allow us to rigorously connect flatness and generalization and to identify conditions under which the connection holds. Moreover, they give rise to a novel, but natural relative flatness measure that correlates strongly with generalization, simplifies to ridge regression for ordinary least squares, and solves the reparameterization issue

    The Geometry of Neural Nets' Parameter Spaces Under Reparametrization

    Full text link
    Model reparametrization -- transforming the parameter space via a bijective differentiable map -- is a popular way to improve the training of neural networks. But reparametrizations have also been problematic since they induce inconsistencies in, e.g., Hessian-based flatness measures, optimization trajectories, and modes of probability density functions. This complicates downstream analyses, e.g. one cannot make a definitive statement about the connection between flatness and generalization. In this work, we study the invariance quantities of neural nets under reparametrization from the perspective of Riemannian geometry. We show that this notion of invariance is an inherent property of any neural net, as long as one acknowledges the assumptions about the metric that is always present, albeit often implicitly, and uses the correct transformation rules under reparametrization. We present discussions on measuring the flatness of minima, in optimization, and in probability-density maximization, along with applications in studying the biases of optimizers and in Bayesian inference

    Flat Seeking Bayesian Neural Networks

    Full text link
    Bayesian Neural Networks (BNNs) provide a probabilistic interpretation for deep learning models by imposing a prior distribution over model parameters and inferring a posterior distribution based on observed data. The model sampled from the posterior distribution can be used for providing ensemble predictions and quantifying prediction uncertainty. It is well-known that deep learning models with lower sharpness have better generalization ability. However, existing posterior inferences are not aware of sharpness/flatness in terms of formulation, possibly leading to high sharpness for the models sampled from them. In this paper, we develop theories, the Bayesian setting, and the variational inference approach for the sharpness-aware posterior. Specifically, the models sampled from our sharpness-aware posterior, and the optimal approximate posterior estimating this sharpness-aware posterior, have better flatness, hence possibly possessing higher generalization ability. We conduct experiments by leveraging the sharpness-aware posterior with state-of-the-art Bayesian Neural Networks, showing that the flat-seeking counterparts outperform their baselines in all metrics of interest.Comment: Accepted at NeurIPS 202
    • …
    corecore