2 research outputs found

    Parallel progressive multiple sequence alignment on reconfigurable meshes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most fundamental and challenging tasks in bio-informatics is to identify related sequences and their hidden biological significance. The most popular and proven best practice method to accomplish this task is aligning multiple sequences together. However, multiple sequence alignment is a computing extensive task. In addition, the advancement in DNA/RNA and Protein sequencing techniques has created a vast amount of sequences to be analyzed that exceeding the capability of traditional computing models. Therefore, an effective parallel multiple sequence alignment model capable of resolving these issues is in a great demand.</p> <p>Results</p> <p>We design <it>O</it>(1) run-time solutions for both local and global dynamic programming pair-wise alignment algorithms on reconfigurable mesh computing model. To align <it>m </it>sequences with max length <it>n</it>, we combining the parallel pair-wise dynamic programming solutions with newly designed parallel components. We successfully reduce the progressive multiple sequence alignment algorithm's run-time complexity from <it>O</it>(<it>m </it>× <it>n</it><sup>4</sup>) to <it>O</it>(<it>m</it>) using <it>O</it>(<it>m </it>× <it>n</it><sup>3</sup>) processing units for scoring schemes that use three distinct values for match/mismatch/gap-extension. The general solution to multiple sequence alignment algorithm takes <it>O</it>(<it>m </it>× <it>n</it><sup>4</sup>) processing units and completes in <it>O</it>(<it>m</it>) time.</p> <p>Conclusions</p> <p>To our knowledge, this is the first time the progressive multiple sequence alignment algorithm is completely parallelized with <it>O</it>(<it>m</it>) run-time. We also provide a new parallel algorithm for the Longest Common Subsequence (LCS) with <it>O</it>(1) run-time using <it>O</it>(<it>n</it><sup>3</sup>) processing units. This is a big improvement over the current best constant-time algorithm that uses <it>O</it>(<it>n</it><sup>4</sup>) processing units.</p

    Multiple Biolgical Sequence Alignment: Scoring Functions, Algorithms, and Evaluations

    Get PDF
    Aligning multiple biological sequences such as protein sequences or DNA/RNA sequences is a fundamental task in bioinformatics and sequence analysis. These alignments may contain invaluable information that scientists need to predict the sequences\u27 structures, determine the evolutionary relationships between them, or discover drug-like compounds that can bind to the sequences. Unfortunately, multiple sequence alignment (MSA) is NP-Complete. In addition, the lack of a reliable scoring method makes it very hard to align the sequences reliably and to evaluate the alignment outcomes. In this dissertation, we have designed a new scoring method for use in multiple sequence alignment. Our scoring method encapsulates stereo-chemical properties of sequence residues and their substitution probabilities into a tree-structure scoring scheme. This new technique provides a reliable scoring scheme with low computational complexity. In addition to the new scoring scheme, we have designed an overlapping sequence clustering algorithm to use in our new three multiple sequence alignment algorithms. One of our alignment algorithms uses a dynamic weighted guidance tree to perform multiple sequence alignment in progressive fashion. The use of dynamic weighted tree allows errors in the early alignment stages to be corrected in the subsequence stages. Other two algorithms utilize sequence knowledge-bases and sequence consistency to produce biological meaningful sequence alignments. To improve the speed of the multiple sequence alignment, we have developed a parallel algorithm that can be deployed on reconfigurable computer models. Analytically, our parallel algorithm is the fastest progressive multiple sequence alignment algorithm
    corecore