2 research outputs found

    A Reinforcement Learning Approach for Efficient Opportunistic Vehicle-to-Cloud Data Transfer

    Full text link
    Vehicular crowdsensing is anticipated to become a key catalyst for data-driven optimization in the Intelligent Transportation System (ITS) domain. Yet, the expected growth in massive Machine-type Communication (mMTC) caused by vehicle-to-cloud transmissions will confront the cellular network infrastructure with great capacity-related challenges. A cognitive way for achieving relief without introducing additional physical infrastructure is the application of opportunistic data transfer for delay-tolerant applications. Hereby, the clients schedule their data transmissions in a channel-aware manner in order to avoid retransmissions and interference with other cell users. In this paper, we introduce a novel approach for this type of resourceaware data transfer which brings together supervised learning for network quality prediction with reinforcement learningbased decision making. The performance evaluation is carried out using data-driven network simulation and real world experiments in the public cellular networks of multiple Mobile Network Operators (MNOs) in different scenarios. The proposed transmission scheme significantly outperforms state-of-the-art probabilistic approaches in most scenarios and achieves data rate improvements of up to 181% in uplink and up to 270% in downlink transmission direction in comparison to conventional periodic data transfer

    LIMITS: Lightweight Machine Learning for IoT Systems with Resource Limitations

    Full text link
    Exploiting big data knowledge on small devices will pave the way for building truly cognitive Internet of Things (IoT) systems. Although machine learning has led to great advancements for IoT-based data analytics, there remains a huge methodological gap for the deployment phase of trained machine learning models. For given resource-constrained platforms such as Microcontroller Units (MCUs), model choice and parametrization are typically performed based on heuristics or analytical models. However, these approaches are only able to provide rough estimates of the required system resources as they do not consider the interplay of hardware, compiler specific optimizations, and code dependencies. In this paper, we present the novel open source framework LIghtweight Machine learning for IoT Systems (LIMITS), which applies a platform-in-the-loop approach explicitly considering the actual compilation toolchain of the target IoT platform. LIMITS focuses on high level tasks such as experiment automation, platform-specific code generation, and sweet spot determination. The solid foundations of validated low-level model implementations are provided by the coupled well-established data analysis framework Waikato Environment for Knowledge Analysis (WEKA). We apply and validate LIMITS in two case studies focusing on cellular data rate prediction and radio-based vehicle classification, where we compare different learning models and real world IoT platforms with memory constraints from 16 kB to 4 MB and demonstrate its potential to catalyze the development of machine learning enabled IoT systems
    corecore