3 research outputs found

    Internet Congestion Control via Deep Reinforcement Learning

    Full text link
    We present and investigate a novel and timely application domain for deep reinforcement learning (RL): Internet congestion control. Congestion control is the core networking task of modulating traffic sources' data-transmission rates to efficiently utilize network capacity, and is the subject of extensive attention in light of the advent of Internet services such as live video, virtual reality, Internet-of-Things, and more. We show that casting congestion control as RL enables training deep network policies that capture intricate patterns in data traffic and network conditions, and leverage this to outperform the state-of-the-art. We also highlight significant challenges facing real-world adoption of RL-based congestion control, including fairness, safety, and generalization, which are not trivial to address within conventional RL formalism. To facilitate further research and reproducibility of our results, we present a test suite for RL-guided congestion control based on the OpenAI Gym interface.Comment: 10 pages, accepted to ICML 201

    Towards A Learning-Based Framework for Self-Driving Design of Networking Protocols

    Full text link
    Networking protocols are designed through long-time and hard-work human efforts. Machine Learning (ML)-based solutions have been developed for communication protocol design to avoid manual efforts to tune individual protocol parameters. While other proposed ML-based methods mainly focus on tuning individual protocol parameters (e.g., adjusting contention window), our main contribution is to propose a novel Deep Reinforcement Learning (DRL)-based framework to systematically design and evaluate networking protocols. We decouple a protocol into a set of parametric modules, each representing a main protocol functionality that is used as DRL input to better understand the generated protocols design optimization and analyze them in a systematic fashion. As a case study, we introduce and evaluate DeepMAC a framework in which a MAC protocol is decoupled into a set of blocks across popular flavors of 802.11 WLANs (e.g., 802.11 b/a/g/n/ac). We are interested to see what blocks are selected by DeepMAC across different networking scenarios and whether DeepMAC is able to adapt to network dynamics.Comment: 18 Pages, Under Review. arXiv admin note: text overlap with arXiv:2002.02075, arXiv:2002.0379

    Latency and Throughput Optimization in Modern Networks: A Comprehensive Survey

    Full text link
    Modern applications are highly sensitive to communication delays and throughput. This paper surveys major attempts on reducing latency and increasing the throughput. These methods are surveyed on different networks and surroundings such as wired networks, wireless networks, application layer transport control, Remote Direct Memory Access, and machine learning based transport control
    corecore