24,406 research outputs found

    Quantum Algebraic Approach to Refined Topological Vertex

    Full text link
    We establish the equivalence between the refined topological vertex of Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of type W_{1+infty} introduced by Miki. Our construction involves trivalent intertwining operators Phi and Phi^* associated with triples of the bosonic Fock modules. Resembling the topological vertex, a triple of vectors in Z^2 is attached to each intertwining operator, which satisfy the Calabi-Yau and smoothness conditions. It is shown that certain matrix elements of Phi and Phi^* give the refined topological vertex C_{lambda mu nu}(t,q) of Iqbal-Kozcaz-Vafa. With another choice of basis, we recover the refined topological vertex C_{lambda mu}^nu(q,t) of Awata-Kanno. The gluing factors appears correctly when we consider any compositions of Phi and Phi^*. The spectral parameters attached to Fock spaces play the role of the K"ahler parameters.Comment: 27 page

    Consistent Histories and Quantum Reasoning

    Get PDF
    A system of quantum reasoning for a closed system is developed by treating non-relativistic quantum mechanics as a stochastic theory. The sample space corresponds to a decomposition, as a sum of orthogonal projectors, of the identity operator on a Hilbert space of histories. Provided a consistency condition is satisfied, the corresponding Boolean algebra of histories, called a {\it framework}, can be assigned probabilities in the usual way, and within a single framework quantum reasoning is identical to ordinary probabilistic reasoning. A refinement rule, which allows a probability distribution to be extended from one framework to a larger (refined) framework, incorporates the dynamical laws of quantum theory. Two or more frameworks which are incompatible because they possess no common refinement cannot be simultaneously employed to describe a single physical system.Comment: Latex, 31 page

    Explicit examples of DIM constraints for network matrix models

    Get PDF
    Dotsenko-Fateev and Chern-Simons matrix models, which describe Nekrasov functions for SYM theories in different dimensions, are all incorporated into network matrix models with the hidden Ding-Iohara-Miki (DIM) symmetry. This lifting is especially simple for what we call balanced networks. Then, the Ward identities (known under the names of Virasoro/W-constraints or loop equations or regularity condition for qq-characters) are also promoted to the DIM level, where they all become corollaries of a single identity.Comment: 46 page

    Remarks on 2+1 Self-dual Chern-Simons Gravity

    Get PDF
    We study 2+1 Chern-Simons gravity at the classical action level. In particular we rederive the linear combinations of the ``standard'' and ``exotic'' Einstein actions, from the (anti) self-duality of the ``internal'' Lorentzian indices. The relation to a genuine four-dimensional (anti)self-dual topological theory greatly facilitates the analysis and its relation to hyperbolic three-dimensional geometry. Finally a non-abelian vector field ``dual'' action is also obtained.Comment: 16+1 pages, LaTeX file, no figures, clarifications and comments added, typos corrected and one reference adde

    Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries

    Full text link
    We propose new conjectures relating sum rules for the polynomial solution of the qKZ equation with open (reflecting) boundaries as a function of the quantum parameter qq and the τ\tau-enumeration of Plane Partitions with specific symmetries, with τ=(q+q1)\tau=-(q+q^{-1}). We also find a conjectural relation \`a la Razumov-Stroganov between the τ0\tau\to 0 limit of the qKZ solution and refined numbers of Totally Symmetric Self Complementary Plane Partitions.Comment: 27 pages, uses lanlmac, epsf and hyperbasics, minor revision
    corecore