101 research outputs found

    Freeway traffic incident detection using large scale traffic data and cameras

    Get PDF
    Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In this paper, a data-driven AID framework is proposed that can leverage large-scale historical traffic data along with the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two basic steps for traffic pattern estimation. First, we estimate a robust univariate speed threshold using historical traffic information from individual sensors. This step can be parallelized using MapReduce framework thereby making it feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve incident detection performance significantly compared to traditional threshold determination. Second, we leverage the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising. The second research objective involved detecting traffic congestion from camera images. Two modern deep learning techniques, the traditional deep convolutional neural network (DCNN) and you only look once (YOLO) models, were used to detect traffic congestion from camera images. A shallow model, support vector machine (SVM) was also used for comparison and to determine the improvements that might be obtained using costly GPU techniques. The YOLO model achieved the highest accuracy of 91.2%, followed by the DCNN model with an accuracy of 90.2%; 85% of images were correctly classified by the SVM model. Congestion regions located far away from the camera, single-lane blockages, and glare issues were found to affect the accuracy of the models. Sensitivity analysis showed that all of the algorithms were found to perform well in daytime conditions, but nighttime conditions were found to affect the accuracy of the vision system. However, for all conditions, the areas under the curve (AUCs) were found to be greater than 0.9 for the deep models. This result shows that the models performed well in challenging conditions as well. The third and final part of this study aimed at detecting traffic incidents from CCTV videos. We approached the incident detection problem using trajectory-based approach for non-congested conditions and pixel-based approach for congested conditions. Typically, incident detection from cameras has been approached using either supervised or unsupervised algorithms. A major hindrance in the application of supervised techniques for incident detection is the lack of a sufficient number of incident videos and the labor-intensive, costly annotation tasks involved in the preparation of a labeled dataset. In this study, we approached the incident detection problem using semi-supervised techniques. Maximum likelihood estimation-based contrastive pessimistic likelihood estimation (CPLE) was used for trajectory classification and identification of incident trajectories. Vehicle detection was performed using state-of-the-art deep learning-based YOLOv3, and simple online real-time tracking (SORT) was used for tracking. Results showed that CPLE-based trajectory classification outperformed the traditional semi-supervised techniques (self learning and label spreading) and its supervised counterpart by a significant margin. For pixel-based incident detection, we used a novel Histogram of Optical Flow Magnitude (HOFM) feature descriptor to detect incident vehicles using SVM classifier based on all vehicles detected by YOLOv3 object detector. We show in this study that this approach can handle both congested and non-congested conditions. However, trajectory-based approach works considerably faster (45 fps compared to 1.4 fps) and also achieves better accuracy compared to pixel-based approach for non-congested conditions. Therefore, for optimal resource usage, trajectory-based approach can be used for non-congested traffic conditions while for congested conditions, pixel-based approach can be used

    Real-time crash prediction of urban highways using machine learning algorithms

    Get PDF
    Doctor of PhilosophyDepartment of Civil EngineeringEric J. FitzsimmonsMotor vehicle crashes in the United States continue to be a serious safety concern for state highway agencies, with over 30,000 fatal crashes reported each year. The World Health Organization (WHO) reported in 2016 that vehicle crashes were the eighth leading cause of death globally. Crashes on roadways are rare and random events that occur due to the result of the complex relationship between the driver, vehicle, weather, and roadway. A significant breadth of research has been conducted to predict and understand why crashes occur through spatial and temporal analyses, understanding information about the driver and roadway, and identification of hazardous locations through geographic information system (GIS) applications. Also, previous research studies have investigated the effectiveness of safety devices designed to reduce the number and severity of crashes. Today, data-driven traffic safety studies are becoming an essential aspect of the planning, design, construction, and maintenance of the roadway network. This can only be done with the assistance of state highway agencies collecting and synthesizing historical crash data, roadway geometry data, and environmental data being collected every day at a resolution that will help researchers develop powerful crash prediction tools. The objective of this research study was to predict vehicle crashes in real-time. This exploratory analysis compared three well-known machine learning methods, including logistic regression, random forest, support vector machine. Additionally, another methodology was developed using variables selected from random forest models that were inserted into the support vector machine model. The study review of the literature noted that this study’s selected methods were found to be more effective in terms of prediction power. A total of 475 crashes were identified from the selected urban highway network in Kansas City, Kansas. For each of the 475 identified crashes, six no-crash events were collected at the same location. This was necessary so that the predictive models could distinguish a crash-prone traffic operational condition from regular traffic flow conditions. Multiple data sources were fused to create a database including traffic operational data from the KC Scout traffic management center, crash and roadway geometry data from the Kanas Department of Transportation; and weather data from NOAA. Data were downloaded from five separate roadway radar sensors close to the crash location. This enable understanding of the traffic flow along the roadway segment (upstream and downstream) during the crash. Additionally, operational data from each radar sensor were collected in five minutes intervals up to 30 minutes prior to a crash occurring. Although six no-crash events were collected for each crash observation, the ratio of crash and no-crash were then reduced to 1:4 (four non-crash events), and 1:2 (two non-crash events) to investigate possible effects of class imbalance on crash prediction. Also, 60%, 70%, and 80% of the data were selected in training to develop each model. The remaining data were then used for model validation. The data used in training ratios were varied to identify possible effects of training data as it relates to prediction power. Additionally, a second database was developed in which variables were log-transformed to reduce possible skewness in the distribution. Model results showed that the size of the dataset increased the overall accuracy of crash prediction. The dataset with a higher observation count could classify more data accurately. The highest accuracies in all three models were observed using the dataset of a 1:6 ratio (one crash event for six no-crash events). The datasets with1:2 ratio predicted 13% to 18% lower than the 1:6 ratio dataset. However, the sensitivity (true positive prediction) was observed highest for the dataset of a 1:2 ratio. It was found that reducing the response class imbalance; the sensitivity could be increased with the disadvantage of a reduction in overall prediction accuracy. The effects of the split ratio were not significantly different in overall accuracy. However, the sensitivity was found to increase with an increase in training data. The logistic regression model found an average of 30.79% (with a standard deviation of 5.02) accurately. The random forest models predicted an average of 13.36% (with a standard deviation of 9.50) accurately. The support vector machine models predicted an average of 29.35% (with a standard deviation of 7.34) accurately. The hybrid approach of random forest and support vector machine models predicted an average of 29.86% (with a standard deviation of 7.33) accurately. The significant variables found from this study included the variation in speed between the posted speed limit and average roadway traffic speed around the crash location. The variations in speed and vehicle per hour between upstream and downstream traffic of a crash location in the previous five minutes before a crash occurred were found to be significant as well. This study provided an important step in real-time crash prediction and complemented many previous research studies found in the literature review. Although the models investigate were somewhat inconclusive, this study provided an investigation of data, variables, and combinations of variables that have not been investigated previously. Real-time crash prediction is expected to assist with the on-going development of connected and autonomous vehicles as the fleet mix begins to change, and new variables can be collected, and data resolution becomes greater. Real-time crash prediction models will also continue to advance highway safety as metropolitan areas continue to grow, and congestion continues to increase

    Real-time classification of aggregated traffic conditions using relevance vector machines

    Get PDF
    This paper examines the theory and application of a recently developed machine learning technique namely Relevance Vector Machines (RVMs) in the task of traffic conditions classification. Traffic conditions are labelled as dangerous (i.e. probably leading to a collision) and safe (i.e. a normal driving) based on 15-minute measurements of average speed and volume. Two different RVM algorithms are trained with two real-world datasets and validated with one real-world dataset describing traffic conditions of a motorway and two A-class roads in the UK. The performance of these classifiers is compared to the popular and successfully applied technique of Support vector machines (SVMs). The main findings indicate that RVMs could successfully be employed in real-time classification of traffic conditions. They rely on a fewer number of decision vectors, their training time could be reduced to the level of seconds and their classification rates are similar to those of SVMs. However, RVM algorithms with a larger training dataset consisting of highly disaggregated traffic data, as well as the incorporation of other traffic or network variables so as to better describe traffic dynamics, may lead to higher classification accuracy than the one presented in this paper

    Exploring the forecasting approach for road accidents: Analytical measures with hybrid machine learning

    Get PDF
    International audienceUrban traffic forecasting models generally follow either a Gaussian Mixture Model (GMM) or a Support Vector Classifier (SVC) to estimate the features of potential road accidents. Although SVC can provide good performances with less data than GMM, it incurs a higher computational cost. This paper proposes a novel framework that combines the descriptive strength of the Gaussian Mixture Model with the high-performance classification capabilities of the Support Vector Classifier. A new approach is presented that uses the mean vectors obtained from the GMM model as input to the SVC. Experimental results show that the approach compares very favorably with baseline statistical methods

    A Deep Learning Approach for Spatiotemporal-Data-Driven Traffic State Estimation

    Get PDF
    The past decade witnessed rapid developments in traffic data sensing technologies in the form of roadside detector hardware, vehicle on-board units, and pedestrian wearable devices. The growing magnitude and complexity of the available traffic data has fueled the demand for data-driven models that can handle large scale inputs. In the recent past, deep-learning-powered algorithms have become the state-of-the-art for various data-driven applications. In this research, three applications of deep learning algorithms for traffic state estimation were investigated. Firstly, network-wide traffic parameters estimation was explored. An attention-based multi-encoder-decoder (Att-MED) neural network architecture was proposed and trained to predict freeway traffic speed up to 60 minutes ahead. Att-MED was designed to encode multiple traffic input sequences: short-term, daily, and weekly cyclic behavior. The proposed network produced an average prediction accuracy of 97.5%, which was superior to the compared baseline models. In addition to improving the output performance, the model\u27s attention weights enhanced the model interpretability. This research additionally explored the utility of low-penetration connected probe-vehicle data for network-wide traffic parameters estimation and prediction on freeways. A novel sequence-to-sequence recurrent graph networks (Seq2Se2 GCN-LSTM) was designed. It was then trained to estimate and predict traffic volume and speed for a 60-minute future time horizon. The proposed methodology generated volume and speed predictions with an average accuracy of 90.5% and 96.6%, respectively, outperforming the investigated baseline models. The proposed method demonstrated robustness against perturbations caused by the probe vehicle fleet\u27s low penetration rate. Secondly, the application of deep learning for road weather detection using roadside CCTVs were investigated. A Vision Transformer (ViT) was trained for simultaneous rain and road surface condition classification. Next, a Spatial Self-Attention (SSA) network was designed to consume the individual detection results, interpret the spatial context, and modify the collective detection output accordingly. The sequential module improved the accuracy of the stand-alone Vision Transformer as measured by the F1-score, raising the total accuracy for both tasks to 96.71% and 98.07%, respectively. Thirdly, a real-time video-based traffic incident detection algorithm was developed to enhance the utilization of the existing roadside CCTV network. The methodology automatically identified the main road regions in video scenes and investigated static vehicles around those areas. The developed algorithm was evaluated using a dataset of roadside videos. The incidents were detected with 85.71% sensitivity and 11.10% false alarm rate with an average delay of 27.53 seconds. In general, the research proposed in this dissertation maximizes the utility of pre-existing traffic infrastructure and emerging probe traffic data. It additionally demonstrated deep learning algorithms\u27 capability of modeling complex spatiotemporal traffic data. This research illustrates that advances in the deep learning field continue to have a high applicability potential in the traffic state estimation domain

    DEVELOPMENT OF A TRAFFIC INCIDENT MANAGEMENT SYSTEM FOR CONTENDING WITH NON-RECURRENT HIGHWAY CONGESTION

    Get PDF
    Traffic incidents, including disabled vehicles, fire, road debris, constructions, police activities, and vehicle crashes, have long been recognized as the main contributor of congestion in highway networks and the related adverse environmental impacts. Unlike recurrent congestion, non-recurrent congestion is random in occurrence and duration owing to the nature of incidents so that it is highly unlikely to follow predetermined temporal and spatial patterns. These findings indicate the need to have an efficient and effective incident management system, including detection, response, clearance, and network-wise traffic management to contend with non-recurrent congestion. In such a system, reliably estimated incident duration, the time difference between the onset of an incident and its complete removal, plays a key role to accomplish its goal - mitigating incident-related congestions and delays. However, due to the complex interactions between factors contributing to the resulting incident duration and the difficulty in recording data at the desirable level of quality, development of such a system for incident traffic management remains at its infancy. Thus, this research has developed a methodology for estimating incident duration and has identified critical variables and their interrelationships related to incident duration using the MDSHA (the Maryland State Highway) incident database. The proposed system is composed of the sequential classifier with association rules (SCAR) and two supplemental models. This study has confirmed its reliability and robustness through a comparative study with several state-of-the-art approaches. To minimize the incident impact, this study further pursued two additional objectives: (1) development of a deployment strategy for incident response units, and (2) design of a detour decision support model for control center staff to determine the necessity of detouring traffic. To achieve the second objective, an integer programming model has been developed from a new perspective of minimizing incident-induced delay, rather than minimizing total response time in the literature. Extensive tests of the developed model's performance and a comparative analysis with other existing models have confirmed the reliability and robustness of the proposed model. To achieve the third objective, this research has first explored key factors critical to the decision for implementing detour/diversion operations. Those factors have been integrated with an Analytical Hierarchy Process (AHP) to constitute the hybrid multi-criteria decision support system. A case study with the developed system has confirmed its reliability and flexibility. The proposed incident estimation model integrated with a response unit allocation model and a detour decision model can enhance the current traffic incident management system for highway agencies to contend with freeway non-recurrent congestion and to assist traffic operators in answering some critical issues such as: "what would be the estimated duration to clear the detected incident?", "How far will the maximum queue reach?", "Can the projected delay and congestion during incident management warrant the detour operations?", and "What would be the resulting operational costs and total socio-economic benefits due to the effective detour operations?". Furthermore, such a system will be able to substantially improve the quality and efficiency of motorists' travel over congested highways

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    Multi-Sensor Data Fusion for Travel Time Estimation

    Get PDF
    The importance of travel time estimation has increased due to the central role it plays in a number of emerging intelligent transport systems and services including Advanced Traveller Information Systems (ATIS), Urban Traffic Control (UTC), Dynamic Route Guidance (DRG), Active Traffic Management (ATM), and network performance monitoring. Along with the emerging of new sensor technologies, the much greater volumes of near real time data provided by these new sensor systems create opportunities for significant improvement in travel time estimation. Data fusion as a recent technique leads to a promising solution to this problem. This thesis presents the development and testing of new methods of multi-sensor data fusion for the accurate, reliable and robust estimation of travel time. This thesis reviews the state-of-art data fusion approaches and its application in transport domain, and discusses both of opportunities and challenging of applying data fusion into travel time estimation in a heterogeneous real time data environment. For a particular England highway scenario where ILDs and ANPR data are largely available, a simple but practical fusion method is proposed to estimate the travel time based on a novel relationship between space-mean-speed and time-mean-speed. In developing a general fusion framework which is able to fuse ILDs, GPS and ANPR data, the Kalman filter is identified as the most appropriate fundamental fusion technique upon which to construct the required framework. This is based both on the ability of the Kalman filter to flexibly accommodate well-established traffic flow models which describe the internal physical relation between the observed variables and objective estimates and on its ability to integrate and propagate in a consistent fashion the uncertainty associated with different data sources. Although the standard linear Kalman filter has been used for multi-sensor travel time estimation in the previous research, the novelty of this research is to develop a nonlinear Kalman filter (EKF and UKF) fusion framework which improves the estimation performance over those methods based on the linear Kalman filter. This proposed framework is validated by both of simulation and real-world scenarios, and is demonstrated the effectiveness of estimating travel time by fusing multi-sensor sources
    corecore