5 research outputs found

    Long- and short-time asymptotics of the first-passage time of the Ornstein-Uhlenbeck and other mean-reverting processes

    Get PDF
    The first-passage problem of the Ornstein-Uhlenbeck process to a boundary is a long-standing problem with no known closed-form solution except in specific cases. Taking this as a starting-point, and extending to a general mean-reverting process, we investigate the long- and short-time asymptotics using a combination of Hopf-Cole and Laplace transform techniques. As a result we are able to give a single formula that is correct in both limits, as well as being exact in certain special cases. We demonstrate the results using a variety of other models

    Long- and short-time asymptotics of the first-passage time of the Ornstein-Uhlenbeck and other mean-reverting processes

    Get PDF
    The first-passage problem of the Ornstein–Uhlenbeck process to a boundary is a long-standing problem with no known closed-form solution except in specific cases. Taking this as a starting-point, and extending to a general mean-reverting process, we investigate the long- and short-time asymptotics using a combination of Hopf–Cole and Laplace transform techniques. As a result we are able to give a single formula that is correct in both limits, as well as being exact in certain special cases. We demonstrate the results using a variety of other models

    A recursion formula for the moments of the first passage time of the Ornstein-Uhlenbeck process

    No full text
    In this paper we use the Siegert formula to derive alternative expressions for the moments of the first passage time of the Ornstein-Uhlenbeck process through a constant threshold. The expression for the nth moment is recursively linked to the lower-order moments and consists of only n terms. These compact expressions can substantially facilitate (numerical) applications also for higher-order moments
    corecore