2 research outputs found

    On the security of permutation-only image encryption schemes

    Get PDF
    Permutation is a commonly used primitive in multimedia (image/video) encryption schemes, and many permutation-only algorithms have been proposed in recent years for the protection of multimedia data. In permutation-only image ciphers, the entries of the image matrix are scrambled using a permutation mapping matrix which is built by a pseudo-random number generator. The literature on the cryptanalysis of image ciphers indicates that the permutation-only image ciphers are insecure against ciphertext-only attacks and/or known/chosenplaintext attacks. However, the previous studies have not been able to ensure the correct retrieval of the complete plaintext elements. In this paper, we revisited the previous works on cryptanalysis of permutation-only image encryption schemes and made the cryptanalysis work on chosen-plaintext attacks complete and more efficient. We proved that in all permutationonly image ciphers, regardless of the cipher structure, the correct permutation mapping is recovered completely by a chosenplaintext attack. To the best of our knowledge, for the first time, this paper gives a chosen-plaintext attack that completely determines the correct plaintext elements using a deterministic method. When the plain-images are of size M × N and with L different color intensities, the number n of required chosen plain-images to break the permutation-only image encryption algorithm is n = logL(MN). The complexity of the proposed attack is O (n · M N) which indicates its feasibility in a polynomial amount of computation time. To validate the performance of the proposed chosen-plaintext attack, numerous experiments were performed on two recently proposed permutation-only image/video ciphers. Both theoretical and experimental results showed that the proposed attack outperforms the state-of-theart cryptanalytic methods

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value
    corecore