2 research outputs found

    Large Scale Modular Quantum Computer Architecture with Atomic Memory and Photonic Interconnects

    Full text link
    The practical construction of scalable quantum computer hardware capable of executing non-trivial quantum algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap quantum computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits. Local entangling quantum gates between qubit memories within a single register are accomplished using natural interactions between the qubits, and entanglement between separate registers is completed via a probabilistic photonic interface between qubits in different registers, even over large distances. We show that this architecture can be made fault-tolerant, and demonstrate its viability for fault-tolerant execution of modest size quantum circuits

    A Realizable Distributed Ion-Trap Quantum Computer

    No full text
    Abstract. Recent advances in trapped ion technology have rapidly accelerated efforts to construct a near-term, scalable quantum computer. Micro-machined electrodes in silicon are expected to trap hundreds of ions, each representing quantum bits, on a single chip. We find, however, that scalable systems must be composed of multiple chips and we explore inter-chip communication technologies. Specifically, we explore the parallelization of modular exponentiation, the substantially dominant portion of Shor’s algorithm, on multi-chip ion-trap systems with photon-mediated communication between chips. Shor’s algorithm, which factors the product of two primes in polynomial time on quantum computers, has strong implications for public-key cryptography and has been the driving application behind much of the research in quantum computing. Parallelization of the algorithm is necessary to obtain tractable execution times on large problems. Our results indicate that a 1024-bit RSA key can be factored in 13 days given 4300 (each of area 10 by 10 centimeters) ion-trap chips in a multi-chip system.
    corecore