4,262 research outputs found

    Slow Adaptive OFDMA Systems Through Chance Constrained Programming

    Full text link
    Adaptive OFDMA has recently been recognized as a promising technique for providing high spectral efficiency in future broadband wireless systems. The research over the last decade on adaptive OFDMA systems has focused on adapting the allocation of radio resources, such as subcarriers and power, to the instantaneous channel conditions of all users. However, such "fast" adaptation requires high computational complexity and excessive signaling overhead. This hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on a much slower timescale than that of the fluctuation of instantaneous channel conditions. Meanwhile, the data rate requirements of individual users are accommodated on the fast timescale with high probability, thereby meeting the requirements except occasional outage. Such an objective has a natural chance constrained programming formulation, which is known to be intractable. To circumvent this difficulty, we formulate safe tractable constraints for the problem based on recent advances in chance constrained programming. We then develop a polynomial-time algorithm for computing an optimal solution to the reformulated problem. Our results show that the proposed slow adaptation scheme drastically reduces both computational cost and control signaling overhead when compared with the conventional fast adaptive OFDMA. Our work can be viewed as an initial attempt to apply the chance constrained programming methodology to wireless system designs. Given that most wireless systems can tolerate an occasional dip in the quality of service, we hope that the proposed methodology will find further applications in wireless communications

    Spectral Efficiency of Multi-User Adaptive Cognitive Radio Networks

    Full text link
    In this correspondence, the comprehensive problem of joint power, rate, and subcarrier allocation have been investigated for enhancing the spectral efficiency of multi-user orthogonal frequency-division multiple access (OFDMA) cognitive radio (CR) networks subject to satisfying total average transmission power and aggregate interference constraints. We propose novel optimal radio resource allocation (RRA) algorithms under different scenarios with deterministic and probabilistic interference violation limits based on a perfect and imperfect availability of cross-link channel state information (CSI). In particular, we propose a probabilistic approach to mitigate the total imposed interference on the primary service under imperfect cross-link CSI. A closed-form mathematical formulation of the cumulative density function (cdf) for the received signal-to-interference-plus-noise ratio (SINR) is formulated to evaluate the resultant average spectral efficiency (ASE). Dual decomposition is utilized to obtain sub-optimal solutions for the non-convex optimization problems. Through simulation results, we investigate the achievable performance and the impact of parameters uncertainty on the overall system performance. Furthermore, we present that the developed RRA algorithms can considerably improve the cognitive performance whilst abide the imposed power constraints. In particular, the performance under imperfect cross-link CSI knowledge for the proposed `probabilistic case' is compared to the conventional scenarios to show the potential gain in employing this scheme

    Control and data channel resource allocation in OFDMA heterogeneous networks

    Get PDF
    This paper investigates the downlink resource allocation problem in Orthogonal Frequency Division Multiple Access (OFDMA) Heterogeneous Networks (HetNets) consisting of macro cells and small cells sharing the same frequency band. Dense deployment of small cells overlaid by a macro layer is considered to be one of the most promising solutions for providing hotspot coverage in future 5G networks. The focus is to devise an optimised policy for small cells’ access to the shared spectrum, in terms of their transmissions, in order to keep small cell served users sum data rate at high levels while ensuring that certain level of quality of service (QoS) for the macro cell users in the vicinity of small cells is provided. Both data and control channel constraints are considered, to ensure that not only the macro cell users’ data rate demands are met, but also a certain level of Bit Error Rate (BER) is ensured for the control channel information. Control channel reliability is especially important as it holds key information to successfully decode the data channel. The problem is addressed by our proposed linear binary integer programming heuristic algorithm which maximises the small cells utility while ensuring the macro users imposed constraints. To further reduce the computational complexity, we propose a progressive interference aware low complexity heuristic solution. Discussion is also presented for the implementation possibility of our proposed algorithms in a practical network. The performance of both the proposed algorithms is compared with the conventional Reuse-1 scheme under different fading conditions and small cell loads. Results show a negligible drop in small cell performance for our proposed schemes, as a trade-off for ensuring all macro users data rate demands, while Reuse-1 scheme can even lead up to 40 % outage when control region of the small cells in heavily loaded
    • …
    corecore