1,562 research outputs found

    Motion Imitation Based on Sparsely Sampled Correspondence

    Full text link
    Existing techniques for motion imitation often suffer a certain level of latency due to their computational overhead or a large set of correspondence samples to search. To achieve real-time imitation with small latency, we present a framework in this paper to reconstruct motion on humanoids based on sparsely sampled correspondence. The imitation problem is formulated as finding the projection of a point from the configuration space of a human's poses into the configuration space of a humanoid. An optimal projection is defined as the one that minimizes a back-projected deviation among a group of candidates, which can be determined in a very efficient way. Benefited from this formulation, effective projections can be obtained by using sparse correspondence. Methods for generating these sparse correspondence samples have also been introduced. Our method is evaluated by applying the human's motion captured by a RGB-D sensor to a humanoid in real-time. Continuous motion can be realized and used in the example application of tele-operation.Comment: 8 pages, 8 figures, technical repor

    SA-Net: Deep Neural Network for Robot Trajectory Recognition from RGB-D Streams

    Full text link
    Learning from demonstration (LfD) and imitation learning offer new paradigms for transferring task behavior to robots. A class of methods that enable such online learning require the robot to observe the task being performed and decompose the sensed streaming data into sequences of state-action pairs, which are then input to the methods. Thus, recognizing the state-action pairs correctly and quickly in sensed data is a crucial prerequisite for these methods. We present SA-Net a deep neural network architecture that recognizes state-action pairs from RGB-D data streams. SA-Net performed well in two diverse robotic applications of LfD -- one involving mobile ground robots and another involving a robotic manipulator -- which demonstrates that the architecture generalizes well to differing contexts. Comprehensive evaluations including deployment on a physical robot show that \sanet{} significantly improves on the accuracy of the previous method that utilizes traditional image processing and segmentation.Comment: (in press

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA

    Long-term use of motion-based video games in care home settings

    Get PDF
    Recent research suggests that motion-based video games have the potential to provide both mental and physical stimulation for older adults in residential care. However, little research has explored the practical challenges and opportunities that arise from integrating these games within existing schedules of activities in these contexts. In our work, we report on a qualitative enquiry that was conducted over a three month period at two long-term care facilities. Findings suggest that older adults enjoyed playing video games, and that games can be a valuable means of re-introducing challenge in late life, but that the impact of age-related changes and impairment can influence people’s ability to engage with games in a group setting. We outline core challenges in the design for care context and discuss implications of our work regarding the suitability of games as a self-directed leisure activity

    Combining Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation

    Full text link
    Manipulation of deformable objects, such as ropes and cloth, is an important but challenging problem in robotics. We present a learning-based system where a robot takes as input a sequence of images of a human manipulating a rope from an initial to goal configuration, and outputs a sequence of actions that can reproduce the human demonstration, using only monocular images as input. To perform this task, the robot learns a pixel-level inverse dynamics model of rope manipulation directly from images in a self-supervised manner, using about 60K interactions with the rope collected autonomously by the robot. The human demonstration provides a high-level plan of what to do and the low-level inverse model is used to execute the plan. We show that by combining the high and low-level plans, the robot can successfully manipulate a rope into a variety of target shapes using only a sequence of human-provided images for direction.Comment: 8 pages, accepted to International Conference on Robotics and Automation (ICRA) 201
    • …
    corecore