306 research outputs found

    A Quantum Internet Architecture

    Full text link
    Entangled quantum communication is advancing rapidly, with laboratory and metropolitan testbeds under development, but to date there is no unifying Quantum Internet architecture. We propose a Quantum Internet architecture centered around the Quantum Recursive Network Architecture (QRNA), using RuleSet-based connections established using a two-pass connection setup. Scalability and internetworking (for both technological and administrative boundaries) are achieved using recursion in naming and connection control. In the near term, this architecture will support end-to-end, two-party entanglement on minimal hardware, and it will extend smoothly to multi-party entanglement and the use of quantum error correction on advanced hardware in the future. For a network internal gateway protocol, we recommend (but do not require) qDijkstra with seconds per Bell pair as link cost for routing; the external gateway protocol is designed to build recursively. The strength of our architecture is shown by assessing extensibility and demonstrating how robust protocol operation can be confirmed using the RuleSet paradigm.Comment: 17 pages, 7 numbered figure

    QuISP: a Quantum Internet Simulation Package

    Full text link
    We present an event-driven simulation package called QuISP for large-scale quantum networks built on top of the OMNeT++ discrete event simulation framework. Although the behavior of quantum networking devices have been revealed by recent research, it is still an open question how they will work in networks of a practical size. QuISP is designed to simulate large-scale quantum networks to investigate their behavior under realistic, noisy and heterogeneous configurations. The protocol architecture we propose enables studies of different choices for error management and other key decisions. Our confidence in the simulator is supported by comparing its output to analytic results for a small network. A key reason for simulation is to look for emergent behavior when large numbers of individually characterized devices are combined. QuISP can handle thousands of qubits in dozens of nodes on a laptop computer, preparing for full Quantum Internet simulation. This simulator promotes the development of protocols for larger and more complex quantum networks.Comment: 17 pages, 12 figure

    Quantum Anonymous Transmissions

    Full text link
    We consider the problem of hiding sender and receiver of classical and quantum bits (qubits), even if all physical transmissions can be monitored. We present a quantum protocol for sending and receiving classical bits anonymously, which is completely traceless: it successfully prevents later reconstruction of the sender. We show that this is not possible classically. It appears that entangled quantum states are uniquely suited for traceless anonymous transmissions. We then extend this protocol to send and receive qubits anonymously. In the process we introduce a new primitive called anonymous entanglement, which may be useful in other contexts as well.Comment: 18 pages, LaTeX. Substantially updated version. To appear at ASIACRYPT '0

    Quantum Cryptography

    Get PDF

    Network Centralities in Quantum Entanglement Distribution due to User Preferences

    Full text link
    Quantum networks are of great interest of late which apply quantum mechanics to transfer information securely. One of the key properties which are exploited is entanglement to transfer information from one network node to another. Applications like quantum teleportation rely on the entanglement between the concerned nodes. Thus, efficient entanglement distribution among network nodes is of utmost importance. Several entanglement distribution methods have been proposed in the literature which primarily rely on attributes, such as, fidelities, link layer network topologies, proactive distribution, etc. This paper studies the centralities of the network when the link layer topology of entanglements (referred to as entangled graph) is driven by usage patterns of peer-to-peer connections between remote nodes (referred to as connection graph) with different characteristics. Three different distributions (uniform, gaussian, and power law) are considered for the connection graph where the two nodes are selected from the same distribution. For the entangled graph, both reactive and proactive entanglements are employed to form a random graph. Results show that the edge centralities (measured as usage frequencies of individual edges during entanglement distribution) of the entangled graph follow power law distributions whereas the growth in entanglements with connections and node centralities (degrees of nodes) are monomolecularly distributed for most of the scenarios. These findings will help in quantum resource management, e.g., quantum technology with high reliability and lower decoherence time may be allocated to edges with high centralities
    corecore