1,881 research outputs found

    Are low cost accountability, communications, and management systems for emergency first responders using 3G and 4G cellular technologies feasible?

    Get PDF
    Reliable, easily deployed communication networks are a necessity for emergency responders as the coordination of their efforts and their safety depend on it. As a volunteer firefighter, this researcher is aware of the shortcomings of the current communication technologies presently deployed, and the risks it poses to firefighters. Some studies have proposed deployment of sophisticated hybrid, mesh networks and mobile ad hoc networks that allow for location tracking, environment and personnel vital signs monitoring, and data communications. Unfortunately the cost of these systems and required training in use of the equipment inhibits their adoption and wide scale deployment across the nation\u27s emergency responder agencies. We are surrounded by secure, reliable cellular network technologies that meet our voice and data communication needs, yet current studies focus on building network infrastructures from the ground up and discussing how to address the security and performance issues of their proposed networks. This study proposes the use of the existing cellular network architecture already in place across the nation as a foundation to explore the feasibility of a low cost communication, management and accountability system utilizing 3G and 4G technologies and architecture

    Unified architecture of mobile ad hoc network security (MANS) system

    Get PDF
    In this dissertation, a unified architecture of Mobile Ad-hoc Network Security (MANS) system is proposed, under which IDS agent, authentication, recovery policy and other policies can be defined formally and explicitly, and are enforced by a uniform architecture. A new authentication model for high-value transactions in cluster-based MANET is also designed in MANS system. This model is motivated by previous works but try to use their beauties and avoid their shortcomings, by using threshold sharing of the certificate signing key within each cluster to distribute the certificate services, and using certificate chain and certificate repository to achieve better scalability, less overhead and better security performance. An Intrusion Detection System is installed in every node, which is responsible for colleting local data from its host node and neighbor nodes within its communication range, pro-processing raw data and periodically broadcasting to its neighborhood, classifying normal or abnormal based on pro-processed data from its host node and neighbor nodes. Security recovery policy in ad hoc networks is the procedure of making a global decision according to messages received from distributed IDS and restore to operational health the whole system if any user or host that conducts the inappropriate, incorrect, or anomalous activities that threaten the connectivity or reliability of the networks and the authenticity of the data traffic in the networks. Finally, quantitative risk assessment model is proposed to numerically evaluate MANS security

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Named Functions at the Edge

    Get PDF
    As end-user and edge-network devices are becoming ever more powerful, they are producing ever increasing amounts of data. Pulling all this data into the cloud for processing is impossible, not only due to its enormous volume, but also due to the stringent latency requirements of many applications. Instead, we argue that end-user and edge-network devices should collectively form edge computing swarms and complement the cloud with their storage and processing resources. This shift from centralized to edge clouds has the potential to open new horizons for application development, supporting new low-latency services and, ultimately, creating new markets for storage and processing resources. To realize this vision, we propose Named Functions at the Edge (NFE), a platform where functions can i) be identified through a routable name, ii) be requested and moved (as data objects) to process data on demand at edge nodes, iii) pull raw or anonymized data from sensors and devices, iv) securely and privately return their results to the invoker and v) compensate each party for use of their data, storage, communication or computing resources via tracking and accountability mechanisms. We use an emergency evacuation application to motivate the need for NFE and demonstrate its potential
    corecore