6 research outputs found

    Synthesizing Switching Controllers for Hybrid Systems by Continuous Invariant Generation

    Full text link
    We extend a template-based approach for synthesizing switching controllers for semi-algebraic hybrid systems, in which all expressions are polynomials. This is achieved by combining a QE (quantifier elimination)-based method for generating continuous invariants with a qualitative approach for predefining templates. Our synthesis method is relatively complete with regard to a given family of predefined templates. Using qualitative analysis, we discuss heuristics to reduce the numbers of parameters appearing in the templates. To avoid too much human interaction in choosing templates as well as the high computational complexity caused by QE, we further investigate applications of the SOS (sum-of-squares) relaxation approach and the template polyhedra approach in continuous invariant generation, which are both well supported by efficient numerical solvers

    Ilinva: Using Abduction to Generate Loop Invariants

    Get PDF
    International audienceWe describe a system to prove properties of programs. The key feature of this approach is a method to automatically synthesize in-ductive invariants of the loops contained in the program. The method is generic, i.e., it applies to a large set of programming languages and application domains; and lazy, in the sense that it only generates invariants that allow one to derive the required properties. It relies on an existing system called GPiD for abductive reasoning modulo theories [14], and on the platform for program verification Why3 [16]. Experiments show evidence of the practical relevance of our approach
    corecore