14,877 research outputs found

    Lessons Learned from Applying Social Network Analysis on an Industrial Free/Libre/Open Source Software Ecosystem

    Get PDF
    Many software projects are no longer done in-house by a single organization. Instead, we are in a new age where software is developed by a networked community of individuals and organizations, which base their relations to each other on mutual interest. Paradoxically, recent research suggests that software development can actually be jointly-developed by rival firms. For instance, it is known that the mobile-device makers Apple and Samsung kept collaborating in open source projects while running expensive patent wars in the court. Taking a case study approach, we explore how rival firms collaborate in the open source arena by employing a multi-method approach that combines qualitative analysis of archival data (QA) with mining software repositories (MSR) and Social Network Analysis (SNA). While exploring collaborative processes within the OpenStack ecosystem, our research contributes to Software Engineering research by exploring the role of groups, sub-communities and business models within a high-networked open source ecosystem. Surprising results point out that competition for the same revenue model (i.e., operating conflicting business models) does not necessary affect collaboration within the ecosystem. Moreover, while detecting the different sub-communities of the OpenStack community, we found out that the expected social tendency of developers to work with developers from same firm (i.e., homophily) did not hold within the OpenStack ecosystem. Furthermore, while addressing a novel, complex and unexplored open source case, this research also contributes to the management literature in coopetition strategy and high-tech entrepreneurship with a rich description on how heterogeneous actors within a high-networked ecosystem (involving individuals, startups, established firms and public organizations) joint-develop a complex infrastructure for big-data in the open source arena.Comment: As accepted by the Journal of Internet Services and Applications (JISA

    Stack Overflow in Github: Any Snippets There?

    Full text link
    When programmers look for how to achieve certain programming tasks, Stack Overflow is a popular destination in search engine results. Over the years, Stack Overflow has accumulated an impressive knowledge base of snippets of code that are amply documented. We are interested in studying how programmers use these snippets of code in their projects. Can we find Stack Overflow snippets in real projects? When snippets are used, is this copy literal or does it suffer adaptations? And are these adaptations specializations required by the idiosyncrasies of the target artifact, or are they motivated by specific requirements of the programmer? The large-scale study presented on this paper analyzes 909k non-fork Python projects hosted on Github, which contain 290M function definitions, and 1.9M Python snippets captured in Stack Overflow. Results are presented as quantitative analysis of block-level code cloning intra and inter Stack Overflow and GitHub, and as an analysis of programming behaviors through the qualitative analysis of our findings.Comment: 14th International Conference on Mining Software Repositories, 11 page

    Simplifying Deep-Learning-Based Model for Code Search

    Full text link
    To accelerate software development, developers frequently search and reuse existing code snippets from a large-scale codebase, e.g., GitHub. Over the years, researchers proposed many information retrieval (IR) based models for code search, which match keywords in query with code text. But they fail to connect the semantic gap between query and code. To conquer this challenge, Gu et al. proposed a deep-learning-based model named DeepCS. It jointly embeds method code and natural language description into a shared vector space, where methods related to a natural language query are retrieved according to their vector similarities. However, DeepCS' working process is complicated and time-consuming. To overcome this issue, we proposed a simplified model CodeMatcher that leverages the IR technique but maintains many features in DeepCS. Generally, CodeMatcher combines query keywords with the original order, performs a fuzzy search on name and body strings of methods, and returned the best-matched methods with the longer sequence of used keywords. We verified its effectiveness on a large-scale codebase with about 41k repositories. Experimental results showed the simplified model CodeMatcher outperforms DeepCS by 97% in terms of MRR (a widely used accuracy measure for code search), and it is over 66 times faster than DeepCS. Besides, comparing with the state-of-the-art IR-based model CodeHow, CodeMatcher also improves the MRR by 73%. We also observed that: fusing the advantages of IR-based and deep-learning-based models is promising because they compensate with each other by nature; improving the quality of method naming helps code search, since method name plays an important role in connecting query and code
    corecore