744 research outputs found

    Blockchain-Enabled On-Path Caching for Efficient and Reliable Content Delivery in Information-Centric Networks

    Get PDF
    As the demand for online content continues to grow, traditional Content Distribution Networks (CDNs) are facing significant challenges in terms of scalability and performance. Information-Centric Networking (ICN) is a promising new approach to content delivery that aims to address these issues by placing content at the center of the network architecture. One of the key features of ICNs is on-path caching, which allows content to be cached at intermediate routers along the path from the source to the destination. On-path caching in ICNs still faces some challenges, such as the scalability of the cache and the management of cache consistency. To address these challenges, this paper proposes several alternative caching schemes that can be integrated into ICNs using blockchain technology. These schemes include Bloom filters, content-based routing, and hybrid caching, which combine the advantages of off-path and on-path cachings. The proposed blockchain-enabled on-path caching mechanism ensures the integrity and authenticity of cached content, and smart contracts automate the caching process and incentivize caching nodes. To evaluate the performance of these caching alternatives, the authors conduct experiments using real-world datasets. The results show that on-path caching can significantly reduce network congestion and improve content delivery efficiency. The Bloom filter caching scheme achieved a cache hit rate of over 90% while reducing the cache size by up to 80% compared to traditional caching. The content-based routing scheme also achieved high cache hit rates while maintaining low latency

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey

    Full text link
    Internet usage has changed from its first design. Hence, the current Internet must cope with some limitations, including performance degradation, availability of IP addresses, and multiple security and privacy issues. Nevertheless, to unsettle the current Internet's network layer i.e., Internet Protocol with ICN is a challenging, expensive task. It also requires worldwide coordination among Internet Service Providers , backbone, and Autonomous Services. Additionally, history showed that technology changes e.g., from 3G to 4G, from IPv4 to IPv6 are not immediate, and usually, the replacement includes a long coexistence period between the old and new technology. Similarly, we believe that the process of replacement of the current Internet will surely transition through the coexistence of IP and ICN. Although the tremendous amount of security and privacy issues of the current Internet taught us the importance of securely designing the architectures, only a few of the proposed architectures place the security-by-design. Therefore, this article aims to provide the first comprehensive Security and Privacy analysis of the state-of-the-art coexistence architectures. Additionally, it yields a horizontal comparison of security and privacy among three deployment approaches of IP and ICN protocol i.e., overlay, underlay, and hybrid and a vertical comparison among ten considered security and privacy features. As a result of our analysis, emerges that most of the architectures utterly fail to provide several SP features including data and traffic flow confidentiality, availability and communication anonymity. We believe this article draws a picture of the secure combination of current and future protocol stacks during the coexistence phase that the Internet will definitely walk across

    5GAuRA. D3.3: RAN Analytics Mechanisms and Performance Benchmarking of Video, Time Critical, and Social Applications

    Get PDF
    5GAuRA deliverable D3.3.This is the final deliverable of Work Package 3 (WP3) of the 5GAuRA project, providing a report on the project’s developments on the topics of Radio Access Network (RAN) analytics and application performance benchmarking. The focus of this deliverable is to extend and deepen the methods and results provided in the 5GAuRA deliverable D3.2 in the context of specific use scenarios of video, time critical, and social applications. In this respect, four major topics of WP3 of 5GAuRA – namely edge-cloud enhanced RAN architecture, machine learning assisted Random Access Channel (RACH) approach, Multi-access Edge Computing (MEC) content caching, and active queue management – are put forward. Specifically, this document provides a detailed discussion on the service level agreement between tenant and service provider in the context of network slicing in Fifth Generation (5G) communication networks. Network slicing is considered as a key enabler to 5G communication system. Legacy telecommunication networks have been providing various services to all kinds of customers through a single network infrastructure. In contrast, by deploying network slicing, operators are now able to partition one network into individual slices, each with its own configuration and Quality of Service (QoS) requirements. There are many applications across industry that open new business opportunities with new business models. Every application instance requires an independent slice with its own network functions and features, whereby every single slice needs an individual Service Level Agreement (SLA). In D3.3, we propose a comprehensive end-to-end structure of SLA between the tenant and the service provider of sliced 5G network, which balances the interests of both sides. The proposed SLA defines reliability, availability, and performance of delivered telecommunication services in order to ensure that right information is delivered to the right destination at right time, safely and securely. We also discuss the metrics of slicebased network SLA such as throughput, penalty, cost, revenue, profit, and QoS related metrics, which are, in the view of 5GAuRA, critical features of the agreement.Peer ReviewedPostprint (published version

    Adaptive learning-based resource management strategy in fog-to-cloud

    Get PDF
    Technology in the twenty-first century is rapidly developing and driving us into a new smart computing world, and emerging lots of new computing architectures. Fog-to-Cloud (F2C) is among one of them, which emerges to ensure the commitment for bringing the higher computing facilities near to the edge of the network and also help the large-scale computing system to be more intelligent. As the F2C is in its infantile state, therefore one of the biggest challenges for this computing paradigm is to efficiently manage the computing resources. Mainly, to address this challenge, in this work, we have given our sole interest for designing the initial architectural framework to build a proper, adaptive and efficient resource management mechanism in F2C. F2C has been proposed as a combined, coordinated and hierarchical computing platform, where a vast number of heterogeneous computing devices are participating. Notably, their versatility creates a massive challenge for effectively handling them. Even following any large-scale smart computing system, it can easily recognize that various kind of services is served for different purposes. Significantly, every service corresponds with the various tasks, which have different resource requirements. So, knowing the characteristics of participating devices and system offered services is giving advantages to build effective and resource management mechanism in F2C-enabled system. Considering these facts, initially, we have given our intense focus for identifying and defining the taxonomic model for all the participating devices and system involved services-tasks. In any F2C-enabled system consists of a large number of small Internet-of-Things (IoTs) and generating a continuous and colossal amount of sensing-data by capturing various environmental events. Notably, this sensing-data is one of the key ingredients for various smart services which have been offered by the F2C-enabled system. Besides that, resource statistical information is also playing a crucial role, for efficiently providing the services among the system consumers. Continuous monitoring of participating devices generates a massive amount of resource statistical information in the F2C-enabled system. Notably, having this information, it becomes much easier to know the device's availability and suitability for executing some tasks to offer some services. Therefore, ensuring better service facilities for any latency-sensitive services, it is essential to securely distribute the sensing-data and resource statistical information over the network. Considering these matters, we also proposed and designed a secure and distributed database framework for effectively and securely distribute the data over the network. To build an advanced and smarter system is necessarily required an effective mechanism for the utilization of system resources. Typically, the utilization and resource handling process mainly depend on the resource selection and allocation mechanism. The prediction of resources (e.g., RAM, CPU, Disk, etc.) usage and performance (i.e., in terms of task execution time) helps the selection and allocation process. Thus, adopting the machine learning (ML) techniques is much more useful for designing an advanced and sophisticated resource allocation mechanism in the F2C-enabled system. Adopting and performing the ML techniques in F2C-enabled system is a challenging task. Especially, the overall diversification and many other issues pose a massive challenge for successfully performing the ML techniques in any F2C-enabled system. Therefore, we have proposed and designed two different possible architectural schemas for performing the ML techniques in the F2C-enabled system to achieve an adaptive, advance and sophisticated resource management mechanism in the F2C-enabled system. Our proposals are the initial footmarks for designing the overall architectural framework for resource management mechanism in F2C-enabled system.La tecnologia del segle XXI avança ràpidament i ens condueix cap a un nou món intel·ligent, creant nous models d'arquitectures informàtiques. Fog-to-Cloud (F2C) és un d’ells, i sorgeix per garantir el compromís d’acostar les instal·lacions informàtiques a prop de la xarxa i també ajudar el sistema informàtic a gran escala a ser més intel·ligent. Com que el F2C es troba en un estat preliminar, un dels majors reptes d’aquest paradigma tecnològic és gestionar eficientment els recursos informàtics. Per fer front a aquest repte, en aquest treball hem centrat el nostre interès en dissenyar un marc arquitectònic per construir un mecanisme de gestió de recursos adequat, adaptatiu i eficient a F2C.F2C ha estat concebut com una plataforma informàtica combinada, coordinada i jeràrquica, on participen un gran nombre de dispositius heterogenis. La seva versatilitat planteja un gran repte per gestionar-los de manera eficaç. Els serveis que s'hi executen consten de diverses tasques, que tenen requisits de recursos diferents. Per tant, conèixer les característiques dels dispositius participants i dels serveis que ofereix el sistema és un requisit per dissenyar mecanismes eficaços i de gestió de recursos en un sistema habilitat per F2C. Tenint en compte aquests fets, inicialment ens hem centrat en identificar i definir el model taxonòmic per a tots els dispositius i sistemes implicats en l'execució de tasques de serveis. Qualsevol sistema habilitat per F2C inclou en un gran nombre de dispositius petits i connectats (conegut com a Internet of Things, o IoT) que generen una quantitat contínua i colossal de dades de detecció capturant diversos events ambientals. Aquestes dades són un dels ingredients clau per a diversos serveis intel·ligents que ofereix F2C. A més, el seguiment continu dels dispositius participants genera igualment una gran quantitat d'informació estadística. En particular, en tenir aquesta informació, es fa molt més fàcil conèixer la disponibilitat i la idoneïtat dels dispositius per executar algunes tasques i oferir alguns serveis. Per tant, per garantir millors serveis sensibles a la latència, és essencial distribuir de manera equilibrada i segura la informació estadística per la xarxa. Tenint en compte aquests assumptes, també hem proposat i dissenyat un entorn de base de dades segura i distribuïda per gestionar de manera eficaç i segura les dades a la xarxa. Per construir un sistema avançat i intel·ligent es necessita un mecanisme eficaç per a la gestió de l'ús dels recursos del sistema. Normalment, el procés d’utilització i manipulació de recursos depèn principalment del mecanisme de selecció i assignació de recursos. La predicció de l’ús i el rendiment de recursos (per exemple, RAM, CPU, disc, etc.) en termes de temps d’execució de tasques ajuda al procés de selecció i assignació. Adoptar les tècniques d’aprenentatge automàtic (conegut com a Machine Learning, o ML) és molt útil per dissenyar un mecanisme d’assignació de recursos avançat i sofisticat en el sistema habilitat per F2C. L’adopció i la realització de tècniques de ML en un sistema F2C és una tasca complexa. Especialment, la diversificació general i molts altres problemes plantegen un gran repte per realitzar amb èxit les tècniques de ML. Per tant, en aquesta recerca hem proposat i dissenyat dos possibles esquemes arquitectònics diferents per realitzar tècniques de ML en el sistema habilitat per F2C per aconseguir un mecanisme de gestió de recursos adaptatiu, avançat i sofisticat en un sistema F2C. Les nostres propostes són els primers passos per dissenyar un marc arquitectònic general per al mecanisme de gestió de recursos en un sistema habilitat per F2C.Postprint (published version

    Blockchain-empowered federated learning approach for an intelligent and reliable D2D caching scheme

    Get PDF
    Cache-enabled device-to-device (D2D) communication is a potential approach to tackle the resource shortage problem. However, public concerns of data privacy and system security still remain, which thus arises an urgent need for a reliable caching scheme. Fortunately, federated learning (FL) with a distributed paradigm provides an effective way to privacy issue by training a high-quality global model without any raw data exchanges. Besides privacy issue, blockchain can be further introduced into FL framework to resist the malicious attacks occurred in D2D caching networks. In this study, we propose a double-layer blockchain-based deep reinforcement FL (BDRFL) scheme to ensure privacy-preserved and caching-efficient D2D networks. In BDRFL, a double-layer blockchain is utilized to further enhance data security. Simulation results first verify the convergence of BDRFL-based algorithm, and then demonstrate that the download latency of the BDRFL-based caching scheme can be significantly reduced under different types of attacks when compared with some existing caching policies
    • …
    corecore