442 research outputs found

    Fast algorithms for large scale generalized distance weighted discrimination

    Get PDF
    High dimension low sample size statistical analysis is important in a wide range of applications. In such situations, the highly appealing discrimination method, support vector machine, can be improved to alleviate data piling at the margin. This leads naturally to the development of distance weighted discrimination (DWD), which can be modeled as a second-order cone programming problem and solved by interior-point methods when the scale (in sample size and feature dimension) of the data is moderate. Here, we design a scalable and robust algorithm for solving large scale generalized DWD problems. Numerical experiments on real data sets from the UCI repository demonstrate that our algorithm is highly efficient in solving large scale problems, and sometimes even more efficient than the highly optimized LIBLINEAR and LIBSVM for solving the corresponding SVM problems

    A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

    Get PDF
    We propose a new first-order primal-dual optimization framework for a convex optimization template with broad applications. Our optimization algorithms feature optimal convergence guarantees under a variety of common structure assumptions on the problem template. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best known convergence rate results, in particular when the template consists of only non-smooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide numerical evidence with two examples and illustrate that the new methods can outperform the state-of-the-art, including Chambolle-Pock, and the alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech. Report, Oct. 2015 (last update Sept. 2016

    A decomposition algorithm for convex differentiable minimization

    Get PDF
    Cover title.Includes bibliographical references.Partially supported by the U.S. Army Research Office (Center for Intelligent Control Systems) DAAL03-86-K-0171 Partially supported by the National Science Foundation. NSF-ECS-8519058by Paul Tseng
    corecore