442 research outputs found
Fast algorithms for large scale generalized distance weighted discrimination
High dimension low sample size statistical analysis is important in a wide
range of applications. In such situations, the highly appealing discrimination
method, support vector machine, can be improved to alleviate data piling at the
margin. This leads naturally to the development of distance weighted
discrimination (DWD), which can be modeled as a second-order cone programming
problem and solved by interior-point methods when the scale (in sample size and
feature dimension) of the data is moderate. Here, we design a scalable and
robust algorithm for solving large scale generalized DWD problems. Numerical
experiments on real data sets from the UCI repository demonstrate that our
algorithm is highly efficient in solving large scale problems, and sometimes
even more efficient than the highly optimized LIBLINEAR and LIBSVM for solving
the corresponding SVM problems
A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization
We propose a new first-order primal-dual optimization framework for a convex
optimization template with broad applications. Our optimization algorithms
feature optimal convergence guarantees under a variety of common structure
assumptions on the problem template. Our analysis relies on a novel combination
of three classic ideas applied to the primal-dual gap function: smoothing,
acceleration, and homotopy. The algorithms due to the new approach achieve the
best known convergence rate results, in particular when the template consists
of only non-smooth functions. We also outline a restart strategy for the
acceleration to significantly enhance the practical performance. We demonstrate
relations with the augmented Lagrangian method and show how to exploit the
strongly convex objectives with rigorous convergence rate guarantees. We
provide numerical evidence with two examples and illustrate that the new
methods can outperform the state-of-the-art, including Chambolle-Pock, and the
alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech.
Report, Oct. 2015 (last update Sept. 2016
A decomposition algorithm for convex differentiable minimization
Cover title.Includes bibliographical references.Partially supported by the U.S. Army Research Office (Center for Intelligent Control Systems) DAAL03-86-K-0171 Partially supported by the National Science Foundation. NSF-ECS-8519058by Paul Tseng
- …
