2,195 research outputs found

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards

    Full text link
    In the classic multi-armed bandits problem, the goal is to have a policy for dynamically operating arms that each yield stochastic rewards with unknown means. The key metric of interest is regret, defined as the gap between the expected total reward accumulated by an omniscient player that knows the reward means for each arm, and the expected total reward accumulated by the given policy. The policies presented in prior work have storage, computation and regret all growing linearly with the number of arms, which is not scalable when the number of arms is large. We consider in this work a broad class of multi-armed bandits with dependent arms that yield rewards as a linear combination of a set of unknown parameters. For this general framework, we present efficient policies that are shown to achieve regret that grows logarithmically with time, and polynomially in the number of unknown parameters (even though the number of dependent arms may grow exponentially). Furthermore, these policies only require storage that grows linearly in the number of unknown parameters. We show that this generalization is broadly applicable and useful for many interesting tasks in networks that can be formulated as tractable combinatorial optimization problems with linear objective functions, such as maximum weight matching, shortest path, and minimum spanning tree computations

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201
    • …
    corecore