23 research outputs found

    IMPrECISE: Good-is-good-enough data integration

    Get PDF
    IMPrECISE is an XQuery module that adds probabilistic XML functionality to an existing XML DBMS, in our case MonetDB/XQuery. We demonstrate probabilistic XML and data integration functionality of IMPrECISE. The prototype is configurable with domain knowledge such that the amount of uncertainty arising during data integration is reduced to an acceptable level, thus obtaining a "good is good enough" data integration with minimal human effort

    Quality Measures in Uncertain Data Management

    Get PDF
    Many applications deal with data that is uncertain. Some examples are applications dealing with sensor information, data integration applications and healthcare applications. Instead of these applications having to deal with the uncertainty, it should be the responsibility of the DBMS to manage all data including uncertain data. Several projects do research on this topic. In this paper, we introduce four measures to be used to assess and compare important characteristics of data and systems

    Storing and Querying Probabilistic XML Using a Probabilistic Relational DBMS

    Get PDF
    This work explores the feasibility of storing and querying probabilistic XML in a probabilistic relational database. Our approach is to adapt known techniques for mapping XML to relational data such that the possible worlds are preserved. We show that this approach can work for any XML-to-relational technique by adapting a representative schema-based (inlining) as well as a representative schemaless technique (XPath Accelerator). We investigate the maturity of probabilistic rela- tional databases for this task with experiments with one of the state-of- the-art systems, called Trio

    Duplicate Detection in Probabilistic Data

    Get PDF
    Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused on the integration of certain source data (relational or XML). There is no work on the integration of uncertain (esp. probabilistic) source data so far. In this paper, we present a first step towards a concise consolidation of probabilistic data. We focus on duplicate detection as a representative and essential step in an integration process. We present techniques for identifying multiple probabilistic representations of the same real-world entities. Furthermore, for increasing the efficiency of the duplicate detection process we introduce search space reduction methods adapted to probabilistic data

    User Feedback in Probabilistic XML

    Get PDF
    Data integration is a challenging problem in many application areas. Approaches mostly attempt to resolve semantic uncertainty and conflicts between information sources as part of the data integration process. In some application areas, this is impractical or even prohibitive, for example, in an ambient environment where devices on an ad hoc basis have to exchange information autonomously. We have proposed a probabilistic XML approach that allows data integration without user involvement by storing semantic uncertainty and conflicts in the integrated XML data. As a\ud consequence, the integrated information source represents\ud all possible appearances of objects in the real world, the\ud so-called possible worlds.\ud \ud In this paper, we show how user feedback on query results\ud can resolve semantic uncertainty and conflicts in the\ud integrated data. Hence, user involvement is effectively postponed to query time, when a user is already interacting actively with the system. The technique relates positive and\ud negative statements on query answers to the possible worlds\ud of the information source thereby either reinforcing, penalizing, or eliminating possible worlds. We show that after repeated user feedback, an integrated information source better resembles the real world and may converge towards a non-probabilistic information source

    Indeterministic Handling of Uncertain Decisions in Duplicate Detection

    Get PDF
    In current research, duplicate detection is usually considered as a deterministic approach in which tuples are either declared as duplicates or not. However, most often it is not completely clear whether two tuples represent the same real-world entity or not. In deterministic approaches, however, this uncertainty is ignored, which in turn can lead to false decisions. In this paper, we present an indeterministic approach for handling uncertain decisions in a duplicate detection process by using a probabilistic target schema. Thus, instead of deciding between multiple possible worlds, all these worlds can be modeled in the resulting data. This approach minimizes the negative impacts of false decisions. Furthermore, the duplicate detection process becomes almost fully automatic and human effort can be reduced to a large extent. Unfortunately, a full-indeterministic approach is by definition too expensive (in time as well as in storage) and hence impractical. For that reason, we additionally introduce several semi-indeterministic methods for heuristically reducing the set of indeterministic handled decisions in a meaningful way

    Qualitative Effects of Knowledge Rules in Probabilistic Data Integration

    Get PDF
    One of the problems in data integration is data overlap: the fact that different data sources have data on the same real world entities. Much development time in data integration projects is devoted to entity resolution. Often advanced similarity measurement techniques are used to remove semantic duplicates from the integration result or solve other semantic conflicts, but it proofs impossible to get rid of all semantic problems in data integration. An often-used rule of thumb states that about 90% of the development effort is devoted to solving the remaining 10% hard cases. In an attempt to significantly decrease human effort at data integration time, we have proposed an approach that stores any remaining semantic uncertainty and conflicts in a probabilistic database enabling it to already be meaningfully used. The main development effort in our approach is devoted to defining and tuning knowledge rules and thresholds. Rules and thresholds directly impact the size and quality of the integration result. We measure integration quality indirectly by measuring the quality of answers to queries on the integrated data set in an information retrieval-like way. The main contribution of this report is an experimental investigation of the effects and sensitivity of rule definition and threshold tuning on the integration quality. This proves that our approach indeed reduces development effort — and not merely shifts the effort to rule definition and threshold tuning — by showing that setting rough safe thresholds and defining only a few rules suffices to produce a ‘good enough’ integration that can be meaningfully used

    Quasi-SLCA based Keyword Query Processing over Probabilistic XML Data

    Full text link
    The probabilistic threshold query is one of the most common queries in uncertain databases, where a result satisfying the query must be also with probability meeting the threshold requirement. In this paper, we investigate probabilistic threshold keyword queries (PrTKQ) over XML data, which is not studied before. We first introduce the notion of quasi-SLCA and use it to represent results for a PrTKQ with the consideration of possible world semantics. Then we design a probabilistic inverted (PI) index that can be used to quickly return the qualified answers and filter out the unqualified ones based on our proposed lower/upper bounds. After that, we propose two efficient and comparable algorithms: Baseline Algorithm and PI index-based Algorithm. To accelerate the performance of algorithms, we also utilize probability density function. An empirical study using real and synthetic data sets has verified the effectiveness and the efficiency of our approaches

    Integrating and Ranking Uncertain Scientific Data

    Get PDF
    Mediator-based data integration systems resolve exploratory queries by joining data elements across sources. In the presence of uncertainties, such multiple expansions can quickly lead to spurious connections and incorrect results. The BioRank project investigates formalisms for modeling uncertainty during scientific data integration and for ranking uncertain query results. Our motivating application is protein function prediction. In this paper we show that: (i) explicit modeling of uncertainties as probabilities increases our ability to predict less-known or previously unknown functions (though it does not improve predicting the well-known). This suggests that probabilistic uncertainty models offer utility for scientific knowledge discovery; (ii) small perturbations in the input probabilities tend to produce only minor changes in the quality of our result rankings. This suggests that our methods are robust against slight variations in the way uncertainties are transformed into probabilities; and (iii) several techniques allow us to evaluate our probabilistic rankings efficiently. This suggests that probabilistic query evaluation is not as hard for real-world problems as theory indicates

    Integrating uncertain XML data from different sources.

    Get PDF
    Data Integration has become increasingly important with today's rapid growth of information available on the web and in electronic form. In the past several years, extensive work has been done to make use of the available data from different sources, particularly, in the scientific and medical fields. In our work, we are interested in integrating data from different uncertain sources in which data are stored in semistructured databases, markedly XML-based data. This interest in XML-based databases came from the flexibility it provides for storing and exchanging data. Furthermore, we are concerned with reliability of different query answers from various sources and on specifying the source where the data came from (the provenance). In essence, our work lies among three areas of interest, data integration, uncertain databases and lineage or provenance in databases. This thesis extends previous work on information integration to accommodate integration of uncertain data from multiple sources
    corecore