3 research outputs found

    A Probabilistic View of Neighborhood-based Recommendation Methods

    Get PDF
    Probabilistic graphic model is an elegant framework to compactly present complex real-world observations by modeling uncertainty and logical flow (conditionally independent factors). In this paper, we present a probabilistic framework of neighborhood-based recommendation methods (PNBM) in which similarity is regarded as an unobserved factor. Thus, PNBM leads the estimation of user preference to maximizing a posterior over similarity. We further introduce a novel multi-layer similarity descriptor which models and learns the joint influence of various features under PNBM, and name the new framework MPNBM. Empirical results on real-world datasets show that MPNBM allows very accurate estimation of user preferences

    Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors

    Full text link
    In the modern e-commerce, the behaviors of customers contain rich information, e.g., consumption habits, the dynamics of preferences. Recently, session-based recommendations are becoming popular to explore the temporal characteristics of customers' interactive behaviors. However, existing works mainly exploit the short-term behaviors without fully taking the customers' long-term stable preferences and evolutions into account. In this paper, we propose a novel Behavior-Intensive Neural Network (BINN) for next-item recommendation by incorporating both users' historical stable preferences and present consumption motivations. Specifically, BINN contains two main components, i.e., Neural Item Embedding, and Discriminative Behaviors Learning. Firstly, a novel item embedding method based on user interactions is developed for obtaining an unified representation for each item. Then, with the embedded items and the interactive behaviors over item sequences, BINN discriminatively learns the historical preferences and present motivations of the target users. Thus, BINN could better perform recommendations of the next items for the target users. Finally, for evaluating the performances of BINN, we conduct extensive experiments on two real-world datasets, i.e., Tianchi and JD. The experimental results clearly demonstrate the effectiveness of BINN compared with several state-of-the-art methods.Comment: 10 pages, 7 figures, KDD 201

    Differentially Private Neighborhood-based Recommender Systems

    Get PDF
    Privacy issues of recommender systems have become a hot topic for the society as such systems are appearing in every corner of our life. In contrast to the fact that many secure multi-party computation protocols have been proposed to prevent information leakage in the process of recommendation computation, very little has been done to restrict the information leakage from the recommendation results. In this paper, we apply the differential privacy concept to neighborhood-based recommendation methods (NBMs) under a probabilistic framework. We first present a solution, by directly calibrating Laplace noise into the training process, to differential-privately find the maximum a posteriori parameters similarity. Then we connect differential privacy to NBMs by exploiting a recent observation that sampling from the scaled posterior distribution of a Bayesian model results in provably differentially private systems. Our experiments show that both solutions allow promising accuracy with a modest privacy budget, and the second solution yields better accuracy if the sampling asymptotically converges. We also compare our solutions to the recent differentially private matrix factorization (MF) recommender systems, and show that our solutions achieve better accuracy when the privacy budget is reasonably small. This is an interesting result because MF systems often offer better accuracy when differential privacy is not applied
    corecore