32,555 research outputs found

    CNM: An Interpretable Complex-valued Network for Matching

    Full text link
    This paper seeks to model human language by the mathematical framework of quantum physics. With the well-designed mathematical formulations in quantum physics, this framework unifies different linguistic units in a single complex-valued vector space, e.g. words as particles in quantum states and sentences as mixed systems. A complex-valued network is built to implement this framework for semantic matching. With well-constrained complex-valued components, the network admits interpretations to explicit physical meanings. The proposed complex-valued network for matching (CNM) achieves comparable performances to strong CNN and RNN baselines on two benchmarking question answering (QA) datasets

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results
    • …
    corecore