202 research outputs found

    Efficient Traffic Management Algorithms for the Core Network using Device-to-Device Communication and Edge Caching

    Get PDF
    Exponentially growing number of communicating devices and the need for faster, more reliable and secure communication are becoming major challenges for current mobile communication architecture. More number of connected devices means more bandwidth and a need for higher Quality of Service (QoS) requirements, which bring new challenges in terms of resource and traffic management. Traffic offload to the edge has been introduced to tackle this demand-explosion that let the core network offload some of the contents to the edge to reduce the traffic congestion. Device-to-Device (D2D) communication and edge caching, has been proposed as promising solutions for offloading data. D2D communication refers to the communication infrastructure where the users in proximity communicate with each other directly. D2D communication improves overall spectral efficiency, however, it introduces additional interference in the system. To enable D2D communication, efficient resource allocation must be introduced in order to minimize the interference in the system and this benefits the system in terms of bandwidth efficiency. In the first part of this thesis, low complexity resource allocation algorithm using stable matching is proposed to optimally assign appropriate uplink resources to the devices in order to minimize interference among D2D and cellular users. Edge caching has recently been introduced as a modification of the caching scheme in the core network, which enables a cellular Base Station (BS) to keep copies of the contents in order to better serve users and enhance Quality of Experience (QoE). However, enabling BSs to cache data on the edge of the network brings new challenges especially on deciding on which and how the contents should be cached. Since users in the same cell may share similar content-needs, we can exploit this temporal-spatial correlation in the favor of caching system which is referred to local content popularity. Content popularity is the most important factor in the caching scheme which helps the BSs to cache appropriate data in order to serve the users more efficiently. In the edge caching scheme, the BS does not know the users request-pattern in advance. To overcome this bottleneck, a content popularity prediction using Markov Decision Process (MDP) is proposed in the second part of this thesis to let the BS know which data should be cached in each time-slot. By using the proposed scheme, core network access request can be significantly reduced and it works better than caching based on historical data in both stable and unstable content popularity

    A dynamic graph optimization framework for multihop device-to-device communication underlaying cellular networks

    No full text
    With emerging demands for local area and popular content sharing services, multihop device-to-device communication is conceived as a vital component of next-generation cellular networks to improve spectral reuse, bring hop gains, and enhance system capacity. Ripening these benefits depends on fundamentally understanding its potential performance impacts and efficiently solving several main technical problems. Aiming to establish a new paradigm for the analysis and design of multihop D2D communications, in this article, we propose a dynamic graph optimization framework that enables the modeling of large-scale systems with multiple D2D pairs and node mobility patterns. By inherently modeling the main technological problems for multihop D2D communications, this framework benefits investigation of theoretical performance limits and studying the optimal system design. Furthermore, these achievable benefits are demonstrated by examples of simulations under a realistic multihop D2D communication underlaying cellular network

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio

    Relay assisted device-to-device communication with channel uncertainty

    Get PDF
    The gains of direct communication between user equipment in a network may not be fully realised due to the separation between the user equipment and due to the fading that the channel between these user equipment experiences. In order to fully realise the gains that direct (device-to-device) communication promises, idle user equipment can be exploited to serve as relays to enforce device-to-device communication. The availability of potential relay user equipment creates a problem: a way to select the relay user equipment. Moreover, unlike infrastructure relays, user equipment are carried around by people and these users are self-interested. Thus the problem of relay selection goes beyond choosing which device to assist in relayed communication but catering for user self-interest. Another problem in wireless communication is the unavailability of perfect channel state information. This reality creates uncertainty in the channel and so in designing selection algorithms, channel uncertainty awareness needs to be a consideration. Therefore the work in this thesis considers the design of relay user equipment selection algorithms that are not only device centric but that are relay user equipment centric. Furthermore, the designed algorithms are channel uncertainty aware. Firstly, a stable matching based relay user equipment selection algorithm is put forward for underlay device-to-device communication. A channel uncertainty aware approach is proposed to cater to imperfect channel state information at the devices. The algorithm is combined with a rate based mode selection algorithm. Next, to cater to the queue state at the relay user equipment, a cross-layer selection algorithm is proposed for a twoway decode and forward relay set up. The algorithm proposed employs deterministic uncertainty constraint in the interference channel, solving the selection algorithm in a heuristic fashion. Then a cluster head selection algorithm is proposed for device-to-device group communication constrained by channel uncertainty in the interference channel. The formulated rate maximization problem is solved for deterministic and probabilistic constraint scenarios, and the problem extended to a multiple-input single-out scenario for which robust beamforming was designed. Finally, relay utility and social distance based selection algorithms are proposed for full duplex decode and forward device-to-device communication set up. A worst-case approach is proposed for a full channel uncertainty scenario. The results from computer simulations indicate that the proposed algorithms offer spectral efficiency, fairness and energy efficiency gains. The results also showed clearly the deterioration in the performance of networks when perfect channel state information is assumed
    corecore