2 research outputs found

    A Probabilistic Approach for Demand-Aware Ride-Sharing Optimization

    Full text link
    Ride-sharing is a modern urban-mobility paradigm with tremendous potential in reducing congestion and pollution. Demand-aware design is a promising avenue for addressing a critical challenge in ride-sharing systems, namely joint optimization of request-vehicle assignment and routing for a fleet of vehicles. In this paper, we develop a probabilistic demand-aware framework to tackle the challenge. We focus on maximizing the expected number of passenger pickups, given the probability distributions of future demands. The key idea of our approach is to assign requests to vehicles in a probabilistic manner. It differentiates our work from existing ones and allows us to explore a richer design space to tackle the request-vehicle assignment puzzle with a performance guarantee but still keeping the final solution practically implementable. The optimization problem is non-convex, combinatorial, and NP-hard in nature. As a key contribution, we explore the problem structure and propose an elegant approximation of the objective function to develop a dual-subgradient heuristic. We characterize a condition under which the heuristic generates a (1−1/e)\left(1-1/e\right) approximation solution. Our solution is simple and scalable, amendable for practical implementation. Results of numerical experiments based on real-world traces in Manhattan show that, as compared to a conventional demand-oblivious scheme, our demand-aware solution improves the passenger pickups by up to 46%. The results also show that joint optimization at the fleet level leads to 19% more pickups than that by separate optimizations at individual vehicles

    Spatio-Temporal Hierarchical Adaptive Dispatching for Ridesharing Systems

    Full text link
    Nowadays, ridesharing has become one of the most popular services offered by online ride-hailing platforms (e.g., Uber and Didi Chuxing). Existing ridesharing platforms adopt the strategy that dispatches orders over the entire city at a uniform time interval. However, the uneven spatio-temporal order distributions in real-world ridesharing systems indicate that such an approach is suboptimal in practice. Thus, in this paper, we exploit adaptive dispatching intervals to boost the platform's profit under a guarantee of the maximum passenger waiting time. Specifically, we propose a hierarchical approach, which generates clusters of geographical areas suitable to share the same dispatching intervals, and then makes online decisions of selecting the appropriate time instances for order dispatch within each spatial cluster. Technically, we prove the impossibility of designing constant-competitive-ratio algorithms for the online adaptive interval problem, and propose online algorithms under partial or even zero future order knowledge that significantly improve the platform's profit over existing approaches. We conduct extensive experiments with a large-scale ridesharing order dataset, which contains all of the over 3.5 million ridesharing orders in Beijing, China, received by Didi Chuxing from October 1st to October 31st, 2018. The experimental results demonstrate that our proposed algorithms outperform existing approaches
    corecore