43,365 research outputs found

    Enhanced bidirectional authentication scheme for RFID communications in Internet of Things environment

    Get PDF
    Among the security issues in the environment of the Internet of things (IOT), the security of information source is a privilege to be concerned. To protect data collection and control devices in IOT, first of all, ones shall ensure the authenticity of information source. To address the uncertainty problem of information sources in IOT, identity authentication technology is essential. In this study, we suggested an enhanced bidirectional authentication scheme that is suitable for Radio Frequency Identification (RFID) communications among devices or between devices and control devices in an IOT environment. Specific improvement measures included three aspects: back-up terminals, a condition monitoring device to increase authentication properties, and an alarm mechanism. The enhanced bidirectional authentication protocol presented in this article has the characteristics of excellent performance in security and privacy protection, which could authenticate data contents, even positions and other data properties, and resist the replay or denial of service attacks; at the same time, it could overcome the defect of data asynchrony between the front end and the back end, providing users with excellent forward security. The simulation experiments showed that system reliability was greatly enhanced by adopting the proposed protocol

    Security and Privacy in the Internet of Things

    Get PDF
    The Internet of Things (IoT) is an emerging paradigm that seamlessly integrates electronic devices with sensing and computing capability into the Internet to achieve intelligent processing and optimized controlling. In a connected world built through IoT, where interconnected devices are extending to every facet of our lives, including our homes, offices, utility infrastructures and even our bodies, we are able to do things in a way that we never before imagined. However, as IoT redefines the possibilities in environment, society and economy, creating tremendous benefits, significant security and privacy concerns arise such as personal information confidentiality, and secure communication and computation. Theoretically, when everything is connected, everything is at risk. The ubiquity of connected things gives adversaries more attack vectors and more possibilities, and thus more catastrophic consequences by cybercrimes. Therefore, it is very critical to move fast to address these rising security and privacy concerns in IoT systems before severe disasters happen. In this dissertation, we mainly address the challenges in two domains: (1) how to protect IoT devices against cyberattacks; (2) how to protect sensitive data during storage, dissemination and utilization for IoT applications. In the first part, we present how to leverage anonymous communication techniques, particularly Tor, to protect the security of IoT devices. We first propose two schemes to enhance the security of smart home by integrating Tor hidden services into IoT gateway for users with performance preference. Then, we propose a multipath-routing based architecture for Tor hidden services to enhance its resistance against traffic analysis attacks, and thus improving the protection for smart home users who desire very strong security but care less about performance. In the second part of this dissertation, we explore the solutions to protect the data for IoT applications. First, we present a reliable, searchable and privacy-preserving e-healthcare system, which takes advantage of emerging cloud storage and IoT infrastructure and enables healthcare service providers (HSPs) to realize remote patient monitoring in a secure and regulatory compliant manner. Then, we turn our attention to the data analysis in IoT applications, which is one of the core components of IoT applications. We propose a cloud-assisted, privacy-preserving machine learning classification scheme over encrypted data for IoT devices. Our scheme is based on a three-party model coupled with a two-stage decryption Paillier-based cryptosystem, which allows a cloud server to interact with machine learning service providers (MLSPs) and conduct computation intensive classification on behalf of the resourced-constrained IoT devices in a privacy-preserving manner. Finally, we explore the problem of privacy-preserving targeted broadcast in IoT, and propose two multi-cloud-based outsourced-ABE (attribute-based encryption) schemes. They enable the receivers to partially outsource the computationally expensive decryption operations to the clouds, while preventing attributes from being disclosed

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Secure and Efficient Privacy-preserving Authentication Scheme using Cuckoo Filter in Remote Patient Monitoring Network

    Full text link
    With the ubiquitous advancement in smart medical devices and systems, the potential of Remote Patient Monitoring (RPM) network is evolving in modern healthcare systems. The medical professionals (doctors, nurses, or medical experts) can access vitals and sensitive physiological information about the patients and provide proper treatment to improve the quality of life through the RPM network. However, the wireless nature of communication in the RPM network makes it challenging to design an efficient mechanism for secure communication. Many authentication schemes have been proposed in recent years to ensure the security of the RPM network. Pseudonym, digital signature, and Authenticated Key Exchange (AKE) protocols are used for the Internet of Medical Things (IoMT) to develop secure authorization and privacy-preserving communication. However, traditional authentication protocols face overhead challenges due to maintaining a large set of key-pairs or pseudonyms results on the hospital cloud server. In this research work, we identify this research gap and propose a novel secure and efficient privacy-preserving authentication scheme using cuckoo filters for the RPM network. The use of cuckoo filters in our proposed scheme provides an efficient way for mutual anonymous authentication and a secret shared key establishment process between medical professionals and patients. Moreover, we identify the misbehaving sensor nodes using a correlation-based anomaly detection model to establish secure communication. The security analysis and formal security validation using SPAN and AVISPA tools show the robustness of our proposed scheme against message modification attacks, replay attacks, and man-in-the-middle attacks
    • …
    corecore