10,966 research outputs found

    A reliable and energy efficient cognitive radio multichannel MAC protocol for ad-hoc networks

    Get PDF
    A thesis submitted in partial ful llment for the degree of Doctor of Philosophy in the Department of Computer Science and Technology, University of BedfordshireRecent research has shown that several spectrum bands are mostly underutilised. To resolve the issue of underutilisation of spectrum bands across the networks, the concept of Cognitive Radio (CR) technology was envisaged. The CR technology allows Secondary Users (SUs) to acquire opportunistic access to large parts of the underutilised spectrum bands on wireless networks. In CR networks, SUs may scan and identify the vacant channels in the wireless spectrum bands and then dynamically tune their receivers to identify vacant channels and transmitters, and commence communication among themselves without causing interference to Primary/Licensed Users (PUs). Despite the developments in the eld of CR technology, recent research shows that still there are many challenges unaddressed in the eld. Thus, there is a need to reduce additional handshaking over control and data channels, to minimise large sized control frames and to introduce reliable channel selection process and maintenance of SUs' communication when PUs return to a licensed channel. A fundamental challenge a ecting this technology is the identi cation of reliable Data Channels (DCHs) for SUs communication among available channels and the continuation of communication when the PU returns. This doctoral research investigates in detail how to resolve issues related to the protocol design for Cognitive Radio Networks (CRNs) on Medium Access Layers (MAC) for Ad-Hoc networks. As a result, a novel Reliable and Energy e cient Cognitive Radio multi-channel MAC protocol (RECR-MAC) for Ad-Hoc networks is proposed to overcome the shortcomings mentioned. After discussing the background, operation and architecture of CR technology, this research proposes numerous platforms and testbeds for the deployment of personal and commercial applications of the CRNs. Side by side, optimised control frames and a reduced number of handshakes over the CCH are suggested to extend the transmitting time for data communication. In addition, the reliable channel selection process is introduced instead of random selection of DCHs for successful data communication among the SUs. In RECR-MAC, the objective of every SU is to select reliable DCHs, thereby ensuring high connectivity and exchanging the successful data frames across the cognitive network. Moreover, the selection criteria of the DCHs are based on multiple factors, such as an initial selection based on the maximum free time recorded by the SUs over the DCH channel ranking, which is proportional to the number of positive/negative acknowledgements, and the past history of DCHs. If more than two DCHs have an equal value during the second, third and following iterations, then the DCHs are selected based upon the maximum free time. The priorities of the DCHs are then assigned based on Reliable Data Channels, that is, RDCH 1, RDCH 2, RDCH 3, and RDCH 4 respectively (where RDCH 1 and RDCH 2 have the highest priority, DRCH 3 and RDCH 4 have the next priority, and so on). The impacts of channel selection process and Backup Data Channel (BDC) over the proposed RECR-MAC protocol are analysed in combination with comparative benchmark CR-MAC protocols based on the timing diagrams proposed. Finally, the RECR-MAC protocol is validated by using a MATLAB simulator with PU impact over the DCHs, both with and without BDC, and by comparing results, such as communication time, transmitting energy and throughput, with benchmark CR-MAC protocols

    CMD: A Multi-Channel Coordination Scheme for Emergency Message Dissemination in IEEE 1609.4

    Full text link
    In the IEEE 1609.4 legacy standard for multi-channel communications in vehicular ad hoc networks(VANETs), the control channel (CCH) is dedicated to broadcast safety messages while the service channels (SCH's) are dedicated to transmit infotainment service content. However, the SCH can be used as an alternative to transmit high priority safety messages in the event that they are invoked during the service channel interval (SCHI). This implies that there is a need to transmit safety messages across multiple available utilized channels to ensure that all vehicles receive the safety message. Transmission across multiple SCH's using the legacy IEEE 1609.4 requires multiple channel switching and therefore introduces further end-to-end delays. Given that safety messaging is a life critical application, it is important that optimal end-to-end delay performance is derived in multi-channel VANET scenarios to ensure reliable safety message dissemination. To tackle this challenge, three primary contributions are in this article: first, a channel coordinator selection approach based on the least average separation distance (LAD) to the vehicles that expect to tune to other SCH's and operates during the control channel interval (CCHI) is proposed. Second, a model to determine the optimal time intervals in which CMD operates during the CCHI is proposed. Third, a contention back-off mechanism for safety message transmission during the SCHI is proposed. Computer simulations and mathematical analysis show that CMD performs better than the legacy IEEE 1609.4 and a selected state-of-the-art multi-channel message dissemination schemes in terms of end-to-end delay and packet reception ratio.Comment: 15 pages, 10 figures, 7 table

    When Channel Bonding is Beneficial for Opportunistic Spectrum Access Networks

    Full text link
    Transmission over multiple frequency bands combined into one logical channel speeds up data transfer for wireless networks. On the other hand, the allocation of multiple channels to a single user decreases the probability of finding a free logical channel for new connections, which may result in a network-wide throughput loss. While this relationship has been studied experimentally, especially in the WLAN configuration, little is known on how to analytically model such phenomena. With the advent of Opportunistic Spectrum Access (OSA) networks, it is even more important to understand the circumstances in which it is beneficial to bond channels occupied by primary users with dynamic duty cycle patterns. In this paper we propose an analytical framework which allows the investigation of the average channel throughput at the medium access control layer for OSA networks with channel bonding enabled. We show that channel bonding is generally beneficial, though the extent of the benefits depend on the features of the OSA network, including OSA network size and the total number of channels available for bonding. In addition, we show that performance benefits can be realized by adaptively changing the number of bonded channels depending on network conditions. Finally, we evaluate channel bonding considering physical layer constraints, i.e. throughput reduction compared to the theoretical throughput of a single virtual channel due to a transmission power limit for any bonding size.Comment: accepted to IEEE Transactions on Wireless Communication

    Queue utilization with hop based enhanced arbitrary inter frame spacing MAC for saturated ad HOC networks

    Get PDF
    © 2015 IEEE. Path length of a multi hop Ad Hoc networks has an adverse impact on the end-to-end throughput especially during network saturation. The success rate of forwarding packets towards destination is limited due to interference, contention, limited buffer space, and bandwidth. Real time applications streaming data fill the buffer space at a faster rate at the source and its nearby forwarding nodes since the channel is shared. The aim of this paper is to increase the success rate of forwarding the packets to yield a higher end-to-end throughput. In order to reduce loss of packets due to buffer overflow and enhance the performance of the network for a saturated network, a novel MAC protocol named Queue Utilization with Hop Based Enhanced Arbitrary Inter Frame Spacing based (QU-EAIFS) MAC is proposed for alleviating the problems in saturated Ad Hoc networks. The protocol prioritises the nodes based on its queue utilization and hops travelled by the packet and it helps achieving higher end-toend performance by forwarding the packets with higher rate towards the destination during network saturation. The proposed MAC enhances the end-to-end performance by approximately 40% and 34% for a 5hop and 6hop communication respectively in a chain topology as compared to the standard IEEE802.11b. The performance of the new MAC also outperforms the performance of IEEE 802.11e MAC. In order to validate the protocol, it is also tested with short hops and varying packet sizes and more realistic random topologies

    Performance analysis of a novel decentralised MAC protocol for cognitive radio networks

    Get PDF
    Due to the demand of emerging Cognitive Radio (CR) technology to permits using the unused licensed spectrum parts by cognitive users (CUs) to provide opportunistic and efficient utilisation of the white spaces. This requires deploying a CR MAC with the required characteristics to coordinate the spectrum access among CUs. Therefore, this paper presents the design and implementation of a novel Medium Access Control (MAC) protocol for decentralised CRNs (MCRN). The protocol provides efficient utilisations of the unused licensed channels and enables CUs to exchange data successfully over licensed channels. This is based on the observation procedure of sensing the status of the Licensed Users (LUs) are ON or OFF over the licensed channels. The protocol is validated with the comparison procedure against two different benchmark protocols in terms of the network performance; communication time and throughput. Therefore, performance analysis demonstrated that the proposed MCRN perform better and achieve higher throughput and time benefits than the benchmarks protocols
    corecore