20,955 research outputs found

    VGM-RNN: Recurrent Neural Networks for Video Game Music Generation

    Get PDF
    The recent explosion of interest in deep neural networks has affected and in some cases reinvigorated work in fields as diverse as natural language processing, image recognition, speech recognition and many more. For sequence learning tasks, recurrent neural networks and in particular LSTM-based networks have shown promising results. Recently there has been interest – for example in the research by Google’s Magenta team – in applying so-called “language modeling” recurrent neural networks to musical tasks, including for the automatic generation of original music. In this work we demonstrate our own LSTM-based music language modeling recurrent network. We show that it is able to learn musical features from a MIDI dataset and generate output that is musically interesting while demonstrating features of melody, harmony and rhythm. We source our dataset from VGMusic.com, a collection of user-submitted MIDI transcriptions of video game songs, and attempt to generate output which emulates this kind of music

    On the Role of Text Preprocessing in Neural Network Architectures: An Evaluation Study on Text Categorization and Sentiment Analysis

    Full text link
    Text preprocessing is often the first step in the pipeline of a Natural Language Processing (NLP) system, with potential impact in its final performance. Despite its importance, text preprocessing has not received much attention in the deep learning literature. In this paper we investigate the impact of simple text preprocessing decisions (particularly tokenizing, lemmatizing, lowercasing and multiword grouping) on the performance of a standard neural text classifier. We perform an extensive evaluation on standard benchmarks from text categorization and sentiment analysis. While our experiments show that a simple tokenization of input text is generally adequate, they also highlight significant degrees of variability across preprocessing techniques. This reveals the importance of paying attention to this usually-overlooked step in the pipeline, particularly when comparing different models. Finally, our evaluation provides insights into the best preprocessing practices for training word embeddings.Comment: Blackbox EMNLP 2018. 7 page
    • …
    corecore