1,539 research outputs found

    An Integrated Development Environment for Declarative Multi-Paradigm Programming

    Full text link
    In this paper we present CIDER (Curry Integrated Development EnviRonment), an analysis and programming environment for the declarative multi-paradigm language Curry. CIDER is a graphical environment to support the development of Curry programs by providing integrated tools for the analysis and visualization of programs. CIDER is completely implemented in Curry using libraries for GUI programming (based on Tcl/Tk) and meta-programming. An important aspect of our environment is the possible adaptation of the development environment to other declarative source languages (e.g., Prolog or Haskell) and the extensibility w.r.t. new analysis methods. To support the latter feature, the lazy evaluation strategy of the underlying implementation language Curry becomes quite useful.Comment: In A. Kusalik (ed), proceedings of the Eleventh International Workshop on Logic Programming Environments (WLPE'01), December 1, 2001, Paphos, Cyprus. cs.PL/011104

    An Operational Semantics for Declarative Multi-Paradigm Languages1 1This work has been partially supported by CICYT TIC 2001-2705-C03-01, by the MCYT under grants HA2001-0059, HU2001-0019 and HI2000-0161, and by the DFG under grant Ha 2457/1-2.

    Get PDF
    AbstractPractical declarative multi-paradigm languages combine the main features of functional, logic and concurrent programming (e.g., laziness, sharing, higher-order, logic variables, non-determinism, search strategies). Usually, these languages also include interfaces to external functions as well as to constraint solvers. In this work, we introduce the first formal description of an operational semantics for realistic multi-paradigm languages covering all the aforementioned features in a precise and understandable manner. We also provide a deterministic version of the operational semantics which models search strategies explicitly. This deterministic semantics becomes essential to develop language-specific tools like program tracers, profilers, optimizers, etc. Finally, we extend the deterministic semantics in order to model concurrent computations. An implementation of the complete operational semantics has been undertaken

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Incremental Semantic Evaluation for Interactive Systems: Inertia, Pre-emption, and Relations

    Get PDF
    Although schemes for incremental semantic evaluation have been explored and refined for more than two decades, the demands of user interaction continue to outstrip the capabilities of these schemes. The feedback produced by a semantic evaluator must support the user's programming activities: it must be structured in a way that provides the user with meaningful insight into the program (directly, or via other tools in the environment) and it must be timely. In this paper we extend an incremental attribute evaluation scheme with three techniques to better meet these demands within the context of a modeless editing system with a flexible tool integration paradigm. Efficient evaluation in the presence of syntax errors (which arise often under modeless editing) is supported by giving semantic attributes inertia: a tendency to not change unless necessary. Pre-emptive evaluation helps to reduce the delays associated with a sequence of edits, allowing an evaluator to "keep pace" with the user. Relations provide a general means to capture semantic structure (for the user, other tools, and as attributes within an evaluation) and are treated efficiently using a form of differential propagation. The combination of these three techniques meets the demands of user interaction; leaving out any one does not
    • …
    corecore