2,454 research outputs found

    Learning Diverse Tone Styles for Image Retouching

    Full text link
    Image retouching, aiming to regenerate the visually pleasing renditions of given images, is a subjective task where the users are with different aesthetic sensations. Most existing methods deploy a deterministic model to learn the retouching style from a specific expert, making it less flexible to meet diverse subjective preferences. Besides, the intrinsic diversity of an expert due to the targeted processing on different images is also deficiently described. To circumvent such issues, we propose to learn diverse image retouching with normalizing flow-based architectures. Unlike current flow-based methods which directly generate the output image, we argue that learning in a style domain could (i) disentangle the retouching styles from the image content, (ii) lead to a stable style presentation form, and (iii) avoid the spatial disharmony effects. For obtaining meaningful image tone style representations, a joint-training pipeline is delicately designed, which is composed of a style encoder, a conditional RetouchNet, and the image tone style normalizing flow (TSFlow) module. In particular, the style encoder predicts the target style representation of an input image, which serves as the conditional information in the RetouchNet for retouching, while the TSFlow maps the style representation vector into a Gaussian distribution in the forward pass. After training, the TSFlow can generate diverse image tone style vectors by sampling from the Gaussian distribution. Extensive experiments on MIT-Adobe FiveK and PPR10K datasets show that our proposed method performs favorably against state-of-the-art methods and is effective in generating diverse results to satisfy different human aesthetic preferences. Source code and pre-trained models are publicly available at https://github.com/SSRHeart/TSFlow

    Region-Aware Portrait Retouching with Sparse Interactive Guidance

    Full text link
    Portrait retouching aims to improve the aesthetic quality of input portrait photos and especially requires human-region priority. \pink{The deep learning-based methods largely elevate the retouching efficiency and provide promising retouched results. However, existing portrait retouching methods focus on automatic retouching, which treats all human-regions equally and ignores users' preferences for specific individuals,} thus suffering from limited flexibility in interactive scenarios. In this work, we emphasize the importance of users' intents and explore the interactive portrait retouching task. Specifically, we propose a region-aware retouching framework with two branches: an automatic branch and an interactive branch. \pink{The automatic branch involves an encoding-decoding process, which searches region candidates and performs automatic region-aware retouching without user guidance. The interactive branch encodes sparse user guidance into a priority condition vector and modulates latent features with a region selection module to further emphasize the user-specified regions. Experimental results show that our interactive branch effectively captures users' intents and generalizes well to unseen scenes with sparse user guidance, while our automatic branch also outperforms the state-of-the-art retouching methods due to improved region-awareness.

    One-shot Detail Retouching with Patch Space Neural Field based Transformation Blending

    Full text link
    Photo retouching is a difficult task for novice users as it requires expert knowledge and advanced tools. Photographers often spend a great deal of time generating high-quality retouched photos with intricate details. In this paper, we introduce a one-shot learning based technique to automatically retouch details of an input image based on just a single pair of before and after example images. Our approach provides accurate and generalizable detail edit transfer to new images. We achieve these by proposing a new representation for image to image maps. Specifically, we propose neural field based transformation blending in the patch space for defining patch to patch transformations for each frequency band. This parametrization of the map with anchor transformations and associated weights, and spatio-spectral localized patches, allows us to capture details well while staying generalizable. We evaluate our technique both on known ground truth filtes and artist retouching edits. Our method accurately transfers complex detail retouching edits
    • …
    corecore