11,537 research outputs found

    Evolution, dynamics, and fixed points

    Get PDF
    Sign-compatible dynamics describe changes in the composition of a population driven by differences in fitness. A saturated equilibrium is a fixed point for sign-compatible dynamics where each subgroup with positive population share has highest fitness. An evolutionary stable equilibrium is a saturated equilibrium attracting all trajectories nearby, such that the Euclidean distance to it decreases monotonically. We address existence, multiplicity, and dynamical stability of fixed points of sign-compatible dynamics. A saturated equilibrium may be approximated by using a variable dimension restart algorithm for solving the nonlinear complementarity problem. Journal of Economic Literature Classification Numbers: C62, C68, C72, C73. Keywords: Sign-compatible population dynamics, saturated equilibrium, evolutionary stable equilibrium, dynamic stability, nonlinear complementarity problem.mathematical economics and econometrics

    A Semismooth Newton Method for Tensor Eigenvalue Complementarity Problem

    Full text link
    In this paper, we consider the tensor eigenvalue complementarity problem which is closely related to the optimality conditions for polynomial optimization, as well as a class of differential inclusions with nonconvex processes. By introducing an NCP-function, we reformulate the tensor eigenvalue complementarity problem as a system of nonlinear equations. We show that this function is strongly semismooth but not differentiable, in which case the classical smoothing methods cannot apply. Furthermore, we propose a damped semismooth Newton method for tensor eigenvalue complementarity problem. A new procedure to evaluate an element of the generalized Jocobian is given, which turns out to be an element of the B-subdifferential under mild assumptions. As a result, the convergence of the damped semismooth Newton method is guaranteed by existing results. The numerical experiments also show that our method is efficient and promising

    Solving Mathematical Programs with Equilibrium Constraints as Nonlinear Programming: A New Framework

    Full text link
    We present a new framework for the solution of mathematical programs with equilibrium constraints (MPECs). In this algorithmic framework, an MPECs is viewed as a concentration of an unconstrained optimization which minimizes the complementarity measure and a nonlinear programming with general constraints. A strategy generalizing ideas of Byrd-Omojokun's trust region method is used to compute steps. By penalizing the tangential constraints into the objective function, we circumvent the problem of not satisfying MFCQ. A trust-funnel-like strategy is used to balance the improvements on feasibility and optimality. We show that, under MPEC-MFCQ, if the algorithm does not terminate in finite steps, then at least one accumulation point of the iterates sequence is an S-stationary point
    corecore