1,270 research outputs found

    A Popov Stability Condition for Uncertain Linear Quantum Systems

    Full text link
    This paper considers a Popov type approach to the problem of robust stability for a class of uncertain linear quantum systems subject to unknown perturbations in the system Hamiltonian. A general stability result is given for a general class of perturbations to the system Hamiltonian. Then, the special case of a nominal linear quantum system is considered with quadratic perturbations to the system Hamiltonian. In this case, a robust stability condition is given in terms of a frequency domain condition which is of the same form as the standard Popov stability condition.Comment: A shortened version to appear in the proceedings of the 2013 American Control Conferenc

    Quantum Popov robust stability analysis of an optical cavity containing a saturated Kerr medium

    Full text link
    This paper applies results on the robust stability of nonlinear quantum systems to a system consisting an optical cavity containing a saturated Kerr medium. The system is characterized by a Hamiltonian operator which contains a non-quadratic term involving a quartic function of the annihilation and creation operators. A saturated version of the Kerr nonlinearity leads to a sector bounded nonlinearity which enables a quantum small gain theorem to be applied to this system in order to analyze its stability. Also, a non-quadratic version of a quantum Popov stability criterion is presented and applied to analyze the stability of this system.Comment: A shortened version will appear in the Proceedings of the 2013 European Control Conferenc

    Guaranteed Non-quadratic Performance for Quantum Systems with Nonlinear Uncertainties

    Full text link
    This paper presents a robust performance analysis result for a class of uncertain quantum systems containing sector bounded nonlinearities arising from perturbations to the system Hamiltonian. An LMI condition is given for calculating a guaranteed upper bound on a non-quadratic cost function. This result is illustrated with an example involving a Josephson junction in an electromagnetic cavity.Comment: A version of this paper is to appear in the Proceedings of the 2014 American Control Conferenc

    Robust Stability of Quantum Systems with Nonlinear Dynamic Uncertainties

    Full text link
    This paper considers the problem of robust stability for a class of uncertain nonlinear quantum systems subject to unknown perturbations in the system Hamiltonian. The nominal system is a linear quantum system defined by a linear vector of coupling operators and a quadratic Hamiltonian. This paper extends previous results on the robust stability of nonlinear quantum systems to allow for quantum systems with dynamic uncertainties. These dynamic uncertainties are required to satisfy a certain quantum stochastic integral quadratic constraint. The robust stability condition is given in terms of a strict bounded real condition. This result is applied to the robust stability analysis of an optical parametric amplifier.Comment: A shortened version is to appear in the proceedings of the 2013 IEEE Conference on Decision and Contro

    Bose condensates in a harmonic trap near the critical temperature

    Full text link
    The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.Comment: 15 pages, 11 embedded figures, revte

    Performance Analysis and Coherent Guaranteed Cost Control for Uncertain Quantum Systems Using Small Gain and Popov Methods

    Get PDF
    This technical note extends applications of the quantum small gain and Popov methods from existing results on robust stability to performance analysis results for a class of uncertain quantum systems. This class of systems involves a nominal linear quantum system and is subject to quadratic perturbations in the system Hamiltonian. Based on these two methods, coherent guaranteed cost controllers are designed for a given quantum system to achieve improved control performance. An illustrative example also shows that the quantum Popov approach can obtain less conservative results than the quantum small gain approach for the same uncertain quantum system.This work was supported by the Australian Research Council (DP130101658, FL110100020
    • …
    corecore