3 research outputs found

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Full text link
    The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability yields a co_NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follows the basic strategy of Harju and Karhumaki but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding language equivalence of deterministic multitape automata and, more generally, multiplicity equivalence of nondeterministic multitape automata. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ

    О минимизации конечных автоматов-преобразователей над полугруппами

    Get PDF
    Finite state transducers over semigroups are regarded as a formal model of sequential reactive programs that operate in the interaction with the environment. At receiving a piece of data a program performs a sequence of actions and displays the current result. Such programs usually arise at implementation of computer drivers, on-line algorithms, control procedures. In many cases verification of such programs can be reduced to minimization and equivalence checking problems for finite state transducers. Minimization of a transducer over a semigroup is performed in three stages. At first the greatest common left-divisors are computed for all states of the transducer, next the transducer is brought to a reduced form by pulling all such divisors ”upstream”, and finally a minimization algorithm for finite state automata is applied to the reduced transducer.Автоматы-преобразователи над полугруппами можно использовать в качестве модели последовательных реагирующих программ, работающих в постоянном взаимодействии со своим окружением. Получив очередную порцию данных, реагирующая программа выполняет некоторую последовательность действий и предъявляет результат. Такие программы возникают при проектировании компьютерных драйверов, алгоритмов, работающих в оперативном режиме, сетевых коммутаторов. Во многих случаях проблема верификации программ такого рода может быть сведена к задачам минимизации и проверки эквивалентности конечных автоматовпреобразователей. Минимизация преобразователей над полугруппами проводится в три этапа. Вначале для всех состояний преобразователя вычисляются наибольшие общие левые делители. Затем все вычисленные делители ”поднимаются вверх” по переходам преобразователя, и в результате образуется приведенный преобразователь. Наконец, для минимизации приведенных преобразователей применяются методы минимизации классических конечных автоматов-распознавателей

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Get PDF
    Abstract. The decidability of determining equivalence of deterministic multitape automata was a longstanding open problem until it was resolved by Harju and Karhumäki in the early 1990s. Their proof of decidability yields a co-NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability which follows the basic strategy of Harju and Karhumäki, but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding equivalence of deterministic multitape automata, as well as automata with transition weights in the field of rational numbers. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ
    corecore