14,582 research outputs found

    On the Complexity of Exact Maximum-Likelihood Decoding for Asymptotically Good Low Density Parity Check Codes: A New Perspective

    Get PDF
    The problem of exact maximum-likelihood (ML) decoding of general linear codes is well-known to be NP-hard. In this paper, we show that exact ML decoding of a class of asymptotically good low density parity check codes — expander codes — over binary symmetric channels (BSCs) is possible with an average-case polynomial complexity. This offers a new way of looking at the complexity issue of exact ML decoding for communication systems where the randomness in channel plays a fundamental central role. More precisely, for any bit-flipping probability p in a nontrivial range, there exists a rate region of non-zero support and a family of asymptotically good codes which achieve error probability exponentially decaying in coding length n while admitting exact ML decoding in average-case polynomial time. As p approaches zero, this rate region approaches the Shannon channel capacity region. Similar results can be extended to AWGN channels, suggesting it may be feasible to eliminate the error floor phenomenon associated with belief-propagation decoding of LDPC codes in the high SNR regime. The derivations are based on a hierarchy of ML certificate decoding algorithms adaptive to the channel realization. In this process, we propose an efficient O(n^2) new ML certificate algorithm based on the max-flow algorithm. Moreover, exact ML decoding of the considered class of codes constructed from LDPC codes with regular left degree, of which the considered expander codes are a special case, remains NP-hard; thus giving an interesting contrast between the worst-case and average-case complexities

    Polynomial time algorithms for multicast network code construction

    Get PDF
    The famous max-flow min-cut theorem states that a source node s can send information through a network (V, E) to a sink node t at a rate determined by the min-cut separating s and t. Recently, it has been shown that this rate can also be achieved for multicasting to several sinks provided that the intermediate nodes are allowed to re-encode the information they receive. We demonstrate examples of networks where the achievable rates obtained by coding at intermediate nodes are arbitrarily larger than if coding is not allowed. We give deterministic polynomial time algorithms and even faster randomized algorithms for designing linear codes for directed acyclic graphs with edges of unit capacity. We extend these algorithms to integer capacities and to codes that are tolerant to edge failures

    Chord Diagrams and Gauss Codes for Graphs

    Get PDF
    Chord diagrams on circles and their intersection graphs (also known as circle graphs) have been intensively studied, and have many applications to the study of knots and knot invariants, among others. However, chord diagrams on more general graphs have not been studied, and are potentially equally valuable in the study of spatial graphs. We will define chord diagrams for planar embeddings of planar graphs and their intersection graphs, and prove some basic results. Then, as an application, we will introduce Gauss codes for immersions of graphs in the plane and give algorithms to determine whether a particular crossing sequence is realizable as the Gauss code of an immersed graph.Comment: 20 pages, many figures. This version has been substantially rewritten, and the results are stronge

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Efficient algorithms for deciding the type of growth of products of integer matrices

    Full text link
    For a given finite set Σ\Sigma of matrices with nonnegative integer entries we study the growth of maxt(Σ)=max{A1...At:AiΣ}. \max_t(\Sigma) = \max\{\|A_{1}... A_{t}\|: A_i \in \Sigma\}. We show how to determine in polynomial time whether the growth with tt is bounded, polynomial, or exponential, and we characterize precisely all possible behaviors.Comment: 20 pages, 4 figures, submitted to LA
    corecore