4 research outputs found

    A Polymorphic RPC Calculus

    Get PDF
    The RPC calculus is a simple semantic foundation for multi-tier programming languages such as Links in which located functions can be written for the client-server model. Subsequently, the typed RPC calculus is designed to capture the location information of functions by types and to drive location type-directed slicing compilations. However, the use of locations is currently limited to monomorphic ones, which is one of the gaps to overcome to put into practice the theory of RPC calculi for client-server model. This paper proposes a polymorphic RPC calculus to allow programmers to write succinct multi-tier programs using polymorphic location constructs. Then the polymorphic multi-tier programs can be automatically translated into programs only containing location constants amenable to the existing slicing compilation methods. We formulate a type system for the polymorphic RPC calculus, and prove its type soundness. Also, we design a monomorphization translation together with proofs on its type and semantic correctness for the translation.Comment: SBMF-Brazilian Symposium on Formal Methods 201

    A Typed Slicing Compilation of the Polymorphic RPC Calculus

    Get PDF
    The polymorphic RPC calculus allows programmers to write succinct multitier programs using polymorphic location constructs. However, until now it lacked an implementation. We develop an experimental programming language based on the polymorphic RPC calculus. We introduce a polymorphic Client-Server (CS) calculus with the client and server parts separated. In contrast to existing untyped CS calculi, our calculus is not only able to resolve polymorphic locations statically, but it is also able to do so dynamically. We design a type-based slicing compilation of the polymorphic RPC calculus into this CS calculus, proving type and semantic correctness. We propose a method to erase types unnecessary for execution but retaining locations at runtime by translating the polymorphic CS calculus into an untyped CS calculus, proving semantic correctness.Comment: A long version of PPDP 2021 (23rd International Symposium on Principles and Practice of Declarative Programming
    corecore