1,038 research outputs found

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    Proof-of-Concept Application - Annual Report Year 2

    Get PDF
    This document first gives an introduction to Application Layer Networks and subsequently presents the catallactic resource allocation model and its integration into the middleware architecture of the developed prototype. Furthermore use cases for employed service models in such scenarios are presented as general application scenarios as well as two very detailed cases: Query services and Data Mining services. This work concludes by describing the middleware implementation and evaluation as well as future work in this area. --Grid Computing

    Contextualized B2B Registries

    No full text
    Abstract. Service discovery is a fundamental concept underpinning the move towards dynamic service-oriented business partnerships. The business process for integrating service discovery and underlying registry technologies into business relationships, procurement and project management functions has not been examined and hence existing Web Service registries lack capabilities required by business today. In this paper we present a novel contextualized B2B registry that supports dynamic registration and discovery of resources within management contexts to ensure that the search space is constrained to the scope of authorized and legitimate resources only. We describe how the registry has been deployed in three case studies from important economic sectors (aerospace, automotive, pharmaceutical) showing how contextualized discovery can support distributed product development processes

    SIMDAT

    No full text

    Performance Evaluation - Annual Report Year 3

    Get PDF
    This report describes the work done and results obtained in third year of the CATNETS project. Experiments carried out with the different configurations of the prototype are reported and simulation results are evaluated with the CATNETS metrics framework. The applicability of the Catallactic approach as market model for service and resource allocation in application layer networks is assessed based on the results and experience gained both from the prototype development and simulations. --Grid Computing

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape
    • …
    corecore