3,295 research outputs found

    A New Variant of the ICP Algorithm for Pairwise 3D Point Cloud Registration

    Get PDF
    Pairwise 3D point cloud registration derived from Terrestrial Laser Scanner (TLS) in static mode is an essential task to produce locally consistent 3D point clouds. In this work, the contributions are twofold. First, a non-iterative scheme by merging the SIFT (Scale Invariant Feature Transform) 3D algorithm and the PFH (Point Feature Histograms) algorithm to find initial approximation of the transformation parameters is proposed. Then, a correspondence model based on a new variant of the ICP (Iterative Closest Point) algorithm to refine the transformation parameters is also proposed. To evaluate the local consistency of the pairwise 3D point cloud registration is used a point-to-distance approach. Experiments were performed using seven pairs of 3D point clouds into an urban area. The results obtained showed that the method achieves point-to-plane RMSE (Root of the Mean Square Error) mean values in the order of 2 centimeters

    Video Registration in Egocentric Vision under Day and Night Illumination Changes

    Full text link
    With the spread of wearable devices and head mounted cameras, a wide range of application requiring precise user localization is now possible. In this paper we propose to treat the problem of obtaining the user position with respect to a known environment as a video registration problem. Video registration, i.e. the task of aligning an input video sequence to a pre-built 3D model, relies on a matching process of local keypoints extracted on the query sequence to a 3D point cloud. The overall registration performance is strictly tied to the actual quality of this 2D-3D matching, and can degrade if environmental conditions such as steep changes in lighting like the ones between day and night occur. To effectively register an egocentric video sequence under these conditions, we propose to tackle the source of the problem: the matching process. To overcome the shortcomings of standard matching techniques, we introduce a novel embedding space that allows us to obtain robust matches by jointly taking into account local descriptors, their spatial arrangement and their temporal robustness. The proposal is evaluated using unconstrained egocentric video sequences both in terms of matching quality and resulting registration performance using different 3D models of historical landmarks. The results show that the proposed method can outperform state of the art registration algorithms, in particular when dealing with the challenges of night and day sequences

    Learning and Matching Multi-View Descriptors for Registration of Point Clouds

    Full text link
    Critical to the registration of point clouds is the establishment of a set of accurate correspondences between points in 3D space. The correspondence problem is generally addressed by the design of discriminative 3D local descriptors on the one hand, and the development of robust matching strategies on the other hand. In this work, we first propose a multi-view local descriptor, which is learned from the images of multiple views, for the description of 3D keypoints. Then, we develop a robust matching approach, aiming at rejecting outlier matches based on the efficient inference via belief propagation on the defined graphical model. We have demonstrated the boost of our approaches to registration on the public scanning and multi-view stereo datasets. The superior performance has been verified by the intensive comparisons against a variety of descriptors and matching methods

    Fast and robust 3D feature extraction from sparse point clouds

    Get PDF
    Matching 3D point clouds, a critical operation in map building and localization, is difficult with Velodyne-type sensors due to the sparse and non-uniform point clouds that they produce. Standard methods from dense 3D point clouds are generally not effective. In this paper, we describe a featurebased approach using Principal Components Analysis (PCA) of neighborhoods of points, which results in mathematically principled line and plane features. The key contribution in this work is to show how this type of feature extraction can be done efficiently and robustly even on non-uniformly sampled point clouds. The resulting detector runs in real-time and can be easily tuned to have a low false positive rate, simplifying data association. We evaluate the performance of our algorithm on an autonomous car at the MCity Test Facility using a Velodyne HDL-32E, and we compare our results against the state-of-theart NARF keypoint detector. © 2016 IEEE

    3D Face Recognition using Significant Point based SULD Descriptor

    Full text link
    In this work, we present a new 3D face recognition method based on Speeded-Up Local Descriptor (SULD) of significant points extracted from the range images of faces. The proposed model consists of a method for extracting distinctive invariant features from range images of faces that can be used to perform reliable matching between different poses of range images of faces. For a given 3D face scan, range images are computed and the potential interest points are identified by searching at all scales. Based on the stability of the interest point, significant points are extracted. For each significant point we compute the SULD descriptor which consists of vector made of values from the convolved Haar wavelet responses located on concentric circles centred on the significant point, and where the amount of Gaussian smoothing is proportional to the radii of the circles. Experimental results show that the newly proposed method provides higher recognition rate compared to other existing contemporary models developed for 3D face recognition

    3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration

    Full text link
    In this paper, we propose the 3DFeat-Net which learns both 3D feature detector and descriptor for point cloud matching using weak supervision. Unlike many existing works, we do not require manual annotation of matching point clusters. Instead, we leverage on alignment and attention mechanisms to learn feature correspondences from GPS/INS tagged 3D point clouds without explicitly specifying them. We create training and benchmark outdoor Lidar datasets, and experiments show that 3DFeat-Net obtains state-of-the-art performance on these gravity-aligned datasets.Comment: 17 pages, 6 figures. Accepted in ECCV 201
    • …
    corecore