336 research outputs found

    LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes

    Full text link
    Deep neural network (DNN) architectures have been shown to outperform traditional pipelines for object segmentation and pose estimation using RGBD data, but the performance of these DNN pipelines is directly tied to how representative the training data is of the true data. Hence a key requirement for employing these methods in practice is to have a large set of labeled data for your specific robotic manipulation task, a requirement that is not generally satisfied by existing datasets. In this paper we develop a pipeline to rapidly generate high quality RGBD data with pixelwise labels and object poses. We use an RGBD camera to collect video of a scene from multiple viewpoints and leverage existing reconstruction techniques to produce a 3D dense reconstruction. We label the 3D reconstruction using a human assisted ICP-fitting of object meshes. By reprojecting the results of labeling the 3D scene we can produce labels for each RGBD image of the scene. This pipeline enabled us to collect over 1,000,000 labeled object instances in just a few days. We use this dataset to answer questions related to how much training data is required, and of what quality the data must be, to achieve high performance from a DNN architecture

    Semantic Pose using Deep Networks Trained on Synthetic RGB-D

    Full text link
    In this work we address the problem of indoor scene understanding from RGB-D images. Specifically, we propose to find instances of common furniture classes, their spatial extent, and their pose with respect to generalized class models. To accomplish this, we use a deep, wide, multi-output convolutional neural network (CNN) that predicts class, pose, and location of possible objects simultaneously. To overcome the lack of large annotated RGB-D training sets (especially those with pose), we use an on-the-fly rendering pipeline that generates realistic cluttered room scenes in parallel to training. We then perform transfer learning on the relatively small amount of publicly available annotated RGB-D data, and find that our model is able to successfully annotate even highly challenging real scenes. Importantly, our trained network is able to understand noisy and sparse observations of highly cluttered scenes with a remarkable degree of accuracy, inferring class and pose from a very limited set of cues. Additionally, our neural network is only moderately deep and computes class, pose and position in tandem, so the overall run-time is significantly faster than existing methods, estimating all output parameters simultaneously in parallel on a GPU in seconds.Comment: ICCV 2015 Submissio

    Rapid Pose Label Generation through Sparse Representation of Unknown Objects

    Full text link
    Deep Convolutional Neural Networks (CNNs) have been successfully deployed on robots for 6-DoF object pose estimation through visual perception. However, obtaining labeled data on a scale required for the supervised training of CNNs is a difficult task - exacerbated if the object is novel and a 3D model is unavailable. To this end, this work presents an approach for rapidly generating real-world, pose-annotated RGB-D data for unknown objects. Our method not only circumvents the need for a prior 3D object model (textured or otherwise) but also bypasses complicated setups of fiducial markers, turntables, and sensors. With the help of a human user, we first source minimalistic labelings of an ordered set of arbitrarily chosen keypoints over a set of RGB-D videos. Then, by solving an optimization problem, we combine these labels under a world frame to recover a sparse, keypoint-based representation of the object. The sparse representation leads to the development of a dense model and the pose labels for each image frame in the set of scenes. We show that the sparse model can also be efficiently used for scaling to a large number of new scenes. We demonstrate the practicality of the generated labeled dataset by training a pipeline for 6-DoF object pose estimation and a pixel-wise segmentation network
    • …
    corecore