3 research outputs found

    A Perspective on Objects and Systematic Generalization in Model-Based RL

    Full text link
    In order to meet the diverse challenges in solving many real-world problems, an intelligent agent has to be able to dynamically construct a model of its environment. Objects facilitate the modular reuse of prior knowledge and the combinatorial construction of such models. In this work, we argue that dynamically bound features (objects) do not simply emerge in connectionist models of the world. We identify several requirements that need to be fulfilled in overcoming this limitation and highlight corresponding inductive biases.Comment: Accepted to the ICML 2019 workshop on Workshop on Generative Modeling and Model-Based Reasoning for Robotics and A

    R-SQAIR: Relational Sequential Attend, Infer, Repeat

    Full text link
    Traditional sequential multi-object attention models rely on a recurrent mechanism to infer object relations. We propose a relational extension (R-SQAIR) of one such attention model (SQAIR) by endowing it with a module with strong relational inductive bias that computes in parallel pairwise interactions between inferred objects. Two recently proposed relational modules are studied on tasks of unsupervised learning from videos. We demonstrate gains over sequential relational mechanisms, also in terms of combinatorial generalization.Comment: 4 page workshop paper accepted at the NeurIPS 2019 Workshop on Perception as Generative Reasoning: Structure, Causality, Probabilit

    Attention over learned object embeddings enables complex visual reasoning

    Full text link
    Neural networks have achieved success in a wide array of perceptual tasks but often fail at tasks involving both perception and higher-level reasoning. On these more challenging tasks, bespoke approaches (such as modular symbolic components, independent dynamics models or semantic parsers) targeted towards that specific type of task have typically performed better. The downside to these targeted approaches, however, is that they can be more brittle than general-purpose neural networks, requiring significant modification or even redesign according to the particular task at hand. Here, we propose a more general neural-network-based approach to dynamic visual reasoning problems that obtains state-of-the-art performance on three different domains, in each case outperforming bespoke modular approaches tailored specifically to the task. Our method relies on learned object-centric representations, self-attention and self-supervised dynamics learning, and all three elements together are required for strong performance to emerge. The success of this combination suggests that there may be no need to trade off flexibility for performance on problems involving spatio-temporal or causal-style reasoning. With the right soft biases and learning objectives in a neural network we may be able to attain the best of both worlds.Comment: 22 pages, 5 figure
    corecore