1,473 research outputs found

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    Travel recommendations in a mobile tourist information system

    Get PDF
    An advanced mobile tourist information system delivers information about sights and events on a tourists travel route. The system should be personalized in its interaction with the tourist. Data that can be used for personalization are: the tourists interest profile, an analysis of their travel history, and the tourists feedback about sights. Existing mobile information systems for tourists do not tailor their information delivery to the tourists interests. In this paper, we propose the use of personalised recommendations that consider all of the personal information a tourist provides. We adopt and modify techniques from recommended systems to the new application area of mobile tourist information. We propose a number of methods for personalised recommendations; and select a subset of these for implementation. This paper then presents the implemented recommended component of our TIP system for mobile tourist informatio

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    Simulating Light-Weight Personalised Recommender Systems in Learning Networks: A Case for Pedagogy-Oriented and Rating-Based Hybrid Recommendation Strategies

    Get PDF
    Recommender systems for e-learning demand specific pedagogy-oriented and hybrid recommendation strategies. Current systems are often based on time-consuming, top down information provisioning combined with intensive data-mining collaborative filtering approaches. However, such systems do not seem appropriate for Learning Networks where distributed information can often not be identified beforehand. Providing sound way-finding support for lifelong learners in Learning Networks requires dedicated personalised recommender systems (PRS), that offer the learners customised advise on which learning actions or programs to study next. Such systems should also be practically feasible and be developed with minimized effort. Currently, such so called light-weight PRS systems are scarcely available. This study shows that simulation studies can support the analysis and optimisation of PRS requirements prior to starting the costly process of their development, and practical implementation (including testing and revision) during field experiments in real-life learning situations. This simulation study confirms that providing recommendations leads towards more effective, more satisfied, and faster goal achievement. Furthermore, this study reveals that a light-weight hybrid PRS-system based on ratings is a good alternative for an ontology-based system, in particular for low-level goal achievement. Finally, it is found that rating-based light-weight hybrid PRS-systems enable more effective, more satisfied, and faster goal attainment than peer-based light-weight hybrid PRS-systems (incorporating collaborative techniques without rating).Recommendation Strategy; Simulation Study; Way-Finding; Collaborative Filtering; Rating

    Development of an Ontology-Based Personalised E-Learning Recommender System

    Get PDF
    E-learning has become an active field of research with a lot of investment towards web-based delivery of personalised learning contents to learners. Some issues of e-learning arise from the heterogeneity and interoperability of learning content to suit learner’s style and preferences in order to improve the e-learning environment. Hence, this paper developed an ontology-based personalised recommender system that is needed to recommend suitable learning contents to learners using collaborative filtering and ontology. A pre-test is carried out for users in order to segment them in learning categories to suit their skill level. The learning contents are structured using ontology; and collaborative filtering is used to collects preferences from many users and then recommending the highest rated contents to users. The system is implemented using JAVA programming language with Structured Query Language (MySQL) as database management system. Performance evaluation of the system is carried out using survey and standard metrics such as precision, recall and F1-Measrure. The results from the two performance evaluation models showed that the system is suitable for recommending the required learning contents to learners

    A Novel Adaptation Model for E-Learning Recommender Systems Based on Student’s Learning Style

    Get PDF
    In recent years, a substantial increase has been witnessed in the use of online learning resources by learn- ers. However, owing to an information overload, many find it difficult to retrieve appropriate learning resources for meeting learning requirements. Most of the existing systems for e-learning make use of a “one-size-fits-all” approach, thus providing all learners with the same content. Whilst recommender systems have scored notable success in the e-commerce domain, they still suffer from drawbacks in terms of making the right recommendations for learning resources. This can be attributed to the differences among learners’ preferences such as varying learning styles, knowledge levels and sequential learning patterns. Hence, to identify the needs of an individual student, e-learning systems that can build profiles of student preferences are required. In addition, changing students’ preferences and multidimensional attributes of the course content are not fully considered simultaneously. It is by failing to review these issues that existing recommendation algorithms often give inaccurate recommendations. This thesis focuses on student learning styles, with the aim of dynamically tailoring the learning process and course content to meet individual needs. The proposed Ubiquitous LEARNing (ULEARN) system is an adaptive e-learning recommender system geared towards providing a personalised learning environ- ment, which ensures that course learning objects are in line with the learner’s adaptive profile. This thesis delivers four main contributions: First, an innovative algorithm which dynamically reduces the number of questions in the Felder-Silverman Learning Styles (FSLSM) questionnaire for the purpose of initialising student profiles has been proposed. The second contribution comprises examining the accuracy of various similarity metrics so as to select the most suitable similarity measurements for learning objects recommendation algorithm. The third contribution includes an Enhanced Collaboration Filtering (ECF) algorithm and an Enhanced Content-Based Filtering (ECBF) algorithm, which solves the issues of cold-start and data sparsity in- herent to the traditional Collaborative Filtering (CF) and the traditional Content-based Filtering (CBF), respectively. Moreover, these two new algorithms have been combined to create a new Enhanced Hybrid Filtering (EHF) algorithm that recommends highly accurate personalised learning objects on the basis of the stu- dents’ learning styles. The fourth contribution is a new algorithm that tracks patterns of student learning behaviours and dynam- ically adapts the student learning style accordingly. The ULEARN recommendation system was implemented with Visual Studio in C++ and Windows Pre- sentation Foundation (WPF) for the development of the Graphical User Interface (GUI). The experimental results revealed that the proposed algorithms have achieved significant improvements in student’s profile adaptation and learning objects recommendation in contrast with strong benchmark models. Further find- ings from experiments indicated that ULEARN can provide relevant learning object recommendations based on students’ learning styles with the overall students’ satisfaction at almost 90%. Furthermore, the results showed that the proposed system is capable of mitigating the problems data sparsity and cold-start, thereby improving the accuracy and reliability of recommendation of the learning object. All in all, the ULEARN system is competent enough to support educational institutions in recommending personalised course content, improving students’ performance as well as promoting student engagement.Arab academy for science technology & maritime transpor

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Personal recommender systems for learners in lifelong learning networks: requirements, techniques and model

    Get PDF
    This article argues for the need of personal recommender systems in lifelong learning networks that provide learners advice on suitable learning activities to follow. Existing recommender systems and recommendation techniques used for consumer products and other contexts are assessed on their suitability for providing navigation support in a learning network. Similarities and differences are translated into specific demands for learning and specific requirements for recommendation techniques. We propose a combination of memory-based recommendation techniques that appear suitable to realize personalized recommendation on learning activities in the context of e-learning. An initial model for the design of such systems in learning networks and a roadmap for their further development are presented
    corecore