1,858 research outputs found

    Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization

    Full text link
    Convex optimization with sparsity-promoting convex regularization is a standard approach for estimating sparse signals in noise. In order to promote sparsity more strongly than convex regularization, it is also standard practice to employ non-convex optimization. In this paper, we take a third approach. We utilize a non-convex regularization term chosen such that the total cost function (consisting of data consistency and regularization terms) is convex. Therefore, sparsity is more strongly promoted than in the standard convex formulation, but without sacrificing the attractive aspects of convex optimization (unique minimum, robust algorithms, etc.). We use this idea to improve the recently developed 'overlapping group shrinkage' (OGS) algorithm for the denoising of group-sparse signals. The algorithm is applied to the problem of speech enhancement with favorable results in terms of both SNR and perceptual quality.Comment: 14 pages, 11 figure

    A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications

    Full text link
    Demixing problems in many areas such as hyperspectral imaging and differential optical absorption spectroscopy (DOAS) often require finding sparse nonnegative linear combinations of dictionary elements that match observed data. We show how aspects of these problems, such as misalignment of DOAS references and uncertainty in hyperspectral endmembers, can be modeled by expanding the dictionary with grouped elements and imposing a structured sparsity assumption that the combinations within each group should be sparse or even 1-sparse. If the dictionary is highly coherent, it is difficult to obtain good solutions using convex or greedy methods, such as non-negative least squares (NNLS) or orthogonal matching pursuit. We use penalties related to the Hoyer measure, which is the ratio of the l1l_1 and l2l_2 norms, as sparsity penalties to be added to the objective in NNLS-type models. For solving the resulting nonconvex models, we propose a scaled gradient projection algorithm that requires solving a sequence of strongly convex quadratic programs. We discuss its close connections to convex splitting methods and difference of convex programming. We also present promising numerical results for example DOAS analysis and hyperspectral demixing problems.Comment: 38 pages, 14 figure

    Sharp Oracle Inequalities for Square Root Regularization

    Full text link
    We study a set of regularization methods for high-dimensional linear regression models. These penalized estimators have the square root of the residual sum of squared errors as loss function, and any weakly decomposable norm as penalty function. This fit measure is chosen because of its property that the estimator does not depend on the unknown standard deviation of the noise. On the other hand, a generalized weakly decomposable norm penalty is very useful in being able to deal with different underlying sparsity structures. We can choose a different sparsity inducing norm depending on how we want to interpret the unknown parameter vector β\beta. Structured sparsity norms, as defined in Micchelli et al. [18], are special cases of weakly decomposable norms, therefore we also include the square root LASSO (Belloni et al. [3]), the group square root LASSO (Bunea et al. [10]) and a new method called the square root SLOPE (in a similar fashion to the SLOPE from Bogdan et al. [6]). For this collection of estimators our results provide sharp oracle inequalities with the Karush-Kuhn-Tucker conditions. We discuss some examples of estimators. Based on a simulation we illustrate some advantages of the square root SLOPE
    • …
    corecore