3 research outputs found

    Towards Daily High-resolution Inundation Observations using Deep Learning and EO

    Full text link
    Satellite remote sensing presents a cost-effective solution for synoptic flood monitoring, and satellite-derived flood maps provide a computationally efficient alternative to numerical flood inundation models traditionally used. While satellites do offer timely inundation information when they happen to cover an ongoing flood event, they are limited by their spatiotemporal resolution in terms of their ability to dynamically monitor flood evolution at various scales. Constantly improving access to new satellite data sources as well as big data processing capabilities has unlocked an unprecedented number of possibilities in terms of data-driven solutions to this problem. Specifically, the fusion of data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions, which have low spatial but high temporal resolutions could yield high-resolution flood inundation at a daily scale. Here a Convolutional-Neural-Network is trained using flood inundation maps derived from Sentinel-1 Synthetic Aperture Radar and various hydrological, topographical, and land-use based predictors for the first time, to predict high-resolution probabilistic maps of flood inundation. The performance of UNet and SegNet model architectures for this task is evaluated, using flood masks derived from Sentinel-1 and Sentinel-2, separately with 95 percent-confidence intervals. The Area under the Curve (AUC) of the Precision Recall Curve (PR-AUC) is used as the main evaluation metric, due to the inherently imbalanced nature of classes in a binary flood mapping problem, with the best model delivering a PR-AUC of 0.85

    A Patch-Based Light Convolutional Neural Network for Land-Cover Mapping Using Landsat-8 Images

    No full text
    This study proposes a light convolutional neural network (LCNN) well-fitted for medium-resolution (30-m) land-cover classification. The LCNN attains high accuracy without overfitting, even with a small number of training samples, and has lower computational costs due to its much lighter design compared to typical convolutional neural networks for high-resolution or hyperspectral image classification tasks. The performance of the LCNN was compared to that of a deep convolutional neural network, support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF). SVM, KNN, and RF were tested with both patch-based and pixel-based systems. Three 30 km × 30 km test sites of the Level II National Land Cover Database were used for reference maps to embrace a wide range of land-cover types, and a single-date Landsat-8 image was used for each test site. To evaluate the performance of the LCNN according to the sample sizes, we varied the sample size to include 20, 40, 80, 160, and 320 samples per class. The proposed LCNN achieved the highest accuracy in 13 out of 15 cases (i.e., at three test sites with five different sample sizes), and the LCNN with a patch size of three produced the highest overall accuracy of 61.94% from 10 repetitions, followed by SVM (61.51%) and RF (61.15%) with a patch size of three. Also, the statistical significance of the differences between LCNN and the other classifiers was reported. Moreover, by introducing the heterogeneity value (from 0 to 8) representing the complexity of the map, we demonstrated the advantage of patch-based LCNN over pixel-based classifiers, particularly at moderately heterogeneous pixels (from 1 to 4), with respect to accuracy (LCNN is 5.5% and 6.3% more accurate for a training sample size of 20 and 320 samples per class, respectively). Finally, the computation times of the classifiers were calculated, and the LCNN was confirmed to have an advantage in large-area mapping

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure
    corecore