277 research outputs found

    A Passivity-Based Distributed Reference Governor for Constrained Robotic Networks

    Full text link
    This paper focuses on a passivity-based distributed reference governor (RG) applied to a pre-stabilized mobile robotic network. The novelty of this paper lies in the method used to solve the RG problem, where a passivity-based distributed optimization scheme is proposed. In particular, the gradient descent method minimizes the global objective function while the dual ascent method maximizes the Hamiltonian. To make the agents converge to the agreed optimal solution, a proportional-integral consensus estimator is used. This paper proves the convergence of the state estimates of the RG to the optimal solution through passivity arguments, considering the physical system static. Then, the effectiveness of the scheme considering the dynamics of the physical system is demonstrated through simulations and experiments.Comment: 8 pages, International Federation of Automatic Conference 2017, 8 figure

    Distributed Collision-Free Motion Coordination on a Sphere: A Conic Control Barrier Function Approach

    Get PDF
    This letter studies a distributed collision avoidance control problem for a group of rigid bodies on a sphere. A rigid body network, consisting of multiple rigid bodies constrained to a spherical surface and an interconnection topology, is first formulated. In this formulation, it is shown that motion coordination on a sphere is equivalent to attitude coordination on the 3-dimensional Special Orthogonal group. Then, an angle-based control barrier function that can handle a geodesic distance constraint on a spherical surface is presented. The proposed control barrier function is then extended to a relative motion case and applied to a collision avoidance problem for a rigid body network operating on a sphere. Each rigid body chooses its control input by solving a distributed optimization problem to achieve a nominal distributed motion coordination strategy while satisfying constraints for collision avoidance. The proposed collision-free motion coordination law is validated via simulation
    • …
    corecore