2 research outputs found

    A Parallel Ranging-Based Relative Position and Orientation Measurement Method for Large-Volume Components

    No full text
    In this paper, a novel relative position and orientation (R-P&O) measurement method for large-volume components is proposed. Based on the method, the parallel distances between the cooperative point pairs (CPPs) are collected by multiple pairs of wireless ranging sensors which are installed on respective components and finally turned into the R-P&O. Accordingly, a measurement model is built and an algorithm is designed to solve the model, in which the radial basis function neural network (RBFNN) produces a preliminary solution by offline training and the differential evolution (DE) strategy finds the accurate solution by online heuristic searching. Furthermore, the crucial parameters and the performance of the algorithm are analyzed through simulating a virtual alignment process which proves that the RBFNN-DE algorithm can quickly and accurately find the global optimal solution in the whole effective workspace. Besides the theory study, a ranging device based on ultrasound has been developed along with a calibration method. Depending on the device, an experiment of actual alignment is implemented to verify the algorithm. Experimental results indicate that the error of R-P&O is no more than 4.1 mm and 0.32° when the ranging error is 0.1 mm, compared with the measurement result of indoor GPS (iGPS)

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex
    corecore