818 research outputs found

    Complexity bounds on supermesh construction for quasi-uniform meshes

    Full text link
    Projecting fields between different meshes commonly arises in computational physics. This operation requires a supermesh construction and its computational cost is proportional to the number of cells of the supermesh nn. Given any two quasi-uniform meshes of nAn_A and nBn_B cells respectively, we show under standard assumptions that n is proportional to nA+nBn_A + n_B. This result substantially improves on the best currently available upper bound on nn and is fundamental for the analysis of algorithms that use supermeshes

    Geometry–aware finite element framework for multi–physics simulations: an algorithmic and software-centric perspective

    Get PDF
    In finite element simulations, the handling of geometrical objects and their discrete representation is a critical aspect in both serial and parallel scientific software environments. The development of codes targeting such envinronments is subject to great development effort and man-hours invested. In this thesis we approach these issues from three fronts. First, stable and efficient techniques for the transfer of discrete fields between non matching volume or surface meshes are an essential ingredient for the discretization and numerical solution of coupled multi-physics and multi-scale problems. In particular L2-projections allows for the transfer of discrete fields between unstructured meshes, both in the volume and on the surface. We present an algorithm for parallelizing the assembly of the L2-transfer operator for unstructured meshes which are arbitrarily distributed among different processes. The algorithm requires no a priori information on the geometrical relationship between the different meshes. Second, the geometric representation is often a limiting factor which imposes a trade-off between how accurately the shape is described, and what methods can be employed for solving a system of differential equations. Parametric finite-elements and bijective mappings between polygons or polyhedra allow us to flexibly construct finite element discretizations with arbitrary resolutions without sacrificing the accuracy of the shape description. Such flexibility allows employing state-of-the-art techniques, such as geometric multigrid methods, on meshes with almost any shape.t, the way numerical techniques are represented in software libraries and approached from a development perspective, affect both usability and maintainability of such libraries. Completely separating the intent of high-level routines from the actual implementation and technologies allows for portable and maintainable performance. We provide an overview on current trends in the development of scientific software and showcase our open-source library utopia

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given

    Adaptive mesh simulations of compressible flows using stabilized formulations

    Get PDF
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis
    • …
    corecore