9,126 research outputs found

    Online Weighted Q-Ensembles for Reduced Hyperparameter Tuning in Reinforcement Learning

    Full text link
    Reinforcement learning is a promising paradigm for learning robot control, allowing complex control policies to be learned without requiring a dynamics model. However, even state of the art algorithms can be difficult to tune for optimum performance. We propose employing an ensemble of multiple reinforcement learning agents, each with a different set of hyperparameters, along with a mechanism for choosing the best performing set(s) on-line. In the literature, the ensemble technique is used to improve performance in general, but the current work specifically addresses decreasing the hyperparameter tuning effort. Furthermore, our approach targets on-line learning on a single robotic system, and does not require running multiple simulators in parallel. Although the idea is generic, the Deep Deterministic Policy Gradient was the model chosen, being a representative deep learning actor-critic method with good performance in continuous action settings but known high variance. We compare our online weighted q-ensemble approach to q-average ensemble strategies addressed in literature using alternate policy training, as well as online training, demonstrating the advantage of the new approach in eliminating hyperparameter tuning. The applicability to real-world systems was validated in common robotic benchmark environments: the bipedal robot half cheetah and the swimmer. Online Weighted Q-Ensemble presented overall lower variance and superior results when compared with q-average ensembles using randomized parameterizations

    Local Navigation Among Movable Obstacles with Deep Reinforcement Learning

    Full text link
    Autonomous robots would benefit a lot by gaining the ability to manipulate their environment to solve path planning tasks, known as the Navigation Among Movable Obstacle (NAMO) problem. In this paper, we present a deep reinforcement learning approach for solving NAMO locally, near narrow passages. We train parallel agents in physics simulation using an Advantage Actor-Critic based algorithm with a multi-modal neural network. We present an online policy that is able to push obstacles in a non-axial-aligned fashion, react to unexpected obstacle dynamics in real-time, and solve the local NAMO problem. Experimental validation in simulation shows that the presented approach generalises to unseen NAMO problems in unknown environments. We further demonstrate the implementation of the policy on a real quadrupedal robot, showing that the policy can deal with real-world sensor noises and uncertainties in unseen NAMO tasks.Comment: 7 pages, 7 figures, 4 table
    • …
    corecore