9,626 research outputs found

    A combinatorial approach to angiosperm pollen morphology

    Get PDF
    Angiosperms (flowering plants) are strikingly diverse. This is clearly expressed in the morphology of their pollen grains, which are characterized by enormous variety in their shape and patterning. In this paper, I approach angiosperm pollen morphology from the perspective of enumerative combinatorics. This involves generating angiosperm pollen morphotypes by algorithmically combining character states and enumerating the results of these combinations. I use this approach to generate 3 643 200 pollen morphotypes, which I visualize using a parallel-coordinates plot. This represents a raw morphospace. To compare real-world and theoretical morphologies, I map the pollen of 1008 species of Neotropical angiosperms growing on Barro Colorado Island (BCI), Panama, onto this raw morphospace. This highlights that, in addition to their well-documented taxonomic diversity, Neotropical rainforests also represent an enormous reservoir of morphological diversity. Angiosperm pollen morphospace at BCI has been filled mostly by pollen morphotypes that are unique to single plant species. Repetition of pollen morphotypes among higher taxa at BCI reflects both constraint and convergence. This combinatorial approach to morphology addresses the complexity that results from large numbers of discrete character combinations and could be employed in any situation where organismal form can be captured by discrete morphological characters

    Shortest Distances as Enumeration Problem

    Full text link
    We investigate the single source shortest distance (SSSD) and all pairs shortest distance (APSD) problems as enumeration problems (on unweighted and integer weighted graphs), meaning that the elements (u,v,d(u,v))(u, v, d(u, v)) -- where uu and vv are vertices with shortest distance d(u,v)d(u, v) -- are produced and listed one by one without repetition. The performance is measured in the RAM model of computation with respect to preprocessing time and delay, i.e., the maximum time that elapses between two consecutive outputs. This point of view reveals that specific types of output (e.g., excluding the non-reachable pairs (u,v,)(u, v, \infty), or excluding the self-distances (u,u,0)(u, u, 0)) and the order of enumeration (e.g., sorted by distance, sorted row-wise with respect to the distance matrix) have a huge impact on the complexity of APSD while they appear to have no effect on SSSD. In particular, we show for APSD that enumeration without output restrictions is possible with delay in the order of the average degree. Excluding non-reachable pairs, or requesting the output to be sorted by distance, increases this delay to the order of the maximum degree. Further, for weighted graphs, a delay in the order of the average degree is also not possible without preprocessing or considering self-distances as output. In contrast, for SSSD we find that a delay in the order of the maximum degree without preprocessing is attainable and unavoidable for any of these requirements.Comment: Updated version adds the study of space complexit

    Self-avoiding walks and polygons on the triangular lattice

    Full text link
    We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monomer from the end points. For self-avoiding polygons to length 58 we calculate series for the mean-square radius of gyration and the first 10 moments of the area. Analysis of the series yields accurate estimates for the connective constant of triangular self-avoiding walks, μ=4.150797226(26)\mu=4.150797226(26), and confirms to a high degree of accuracy several theoretical predictions for universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure

    Enumeration of self-avoiding walks on the square lattice

    Full text link
    We describe a new algorithm for the enumeration of self-avoiding walks on the square lattice. Using up to 128 processors on a HP Alpha server cluster we have enumerated the number of self-avoiding walks on the square lattice to length 71. Series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and mean-square distance of monomers from the end points have been derived to length 59. Analysis of the resulting series yields accurate estimates of the critical exponents γ\gamma and ν\nu confirming predictions of their exact values. Likewise we obtain accurate amplitude estimates yielding precise values for certain universal amplitude combinations. Finally we report on an analysis giving compelling evidence that the leading non-analytic correction-to-scaling exponent Δ1=3/2\Delta_1=3/2.Comment: 24 pages, 6 figure
    corecore