19,774 research outputs found

    Communication over Finite-Chain-Ring Matrix Channels

    Full text link
    Though network coding is traditionally performed over finite fields, recent work on nested-lattice-based network coding suggests that, by allowing network coding over certain finite rings, more efficient physical-layer network coding schemes can be constructed. This paper considers the problem of communication over a finite-ring matrix channel Y=AX+BEY = AX + BE, where XX is the channel input, YY is the channel output, EE is random error, and AA and BB are random transfer matrices. Tight capacity results are obtained and simple polynomial-complexity capacity-achieving coding schemes are provided under the assumption that AA is uniform over all full-rank matrices and BEBE is uniform over all rank-tt matrices, extending the work of Silva, Kschischang and K\"{o}tter (2010), who handled the case of finite fields. This extension is based on several new results, which may be of independent interest, that generalize concepts and methods from matrices over finite fields to matrices over finite chain rings.Comment: Submitted to IEEE Transactions on Information Theory, April 2013. Revised version submitted in Feb. 2014. Final version submitted in June 201

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices
    corecore