5,766 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Frequency Modulated Continuous Waveform Radar for Collision Prevention in Large Vehicles

    Get PDF
    The drivers of large vehicles can have very limited visibility, which contributes to poor situation awareness and an increased risk of collision with other agents. This thesis is focused on the development of reliable sensing for this close proximity problem in large vehicles operating in harsh environmental conditions. It emphasises the use of in-depth knowledge of a sensor’s physics and performance characteristics to develop effective mathematical models for use in different mapping algorithms. An analysis of the close proximity problem and the demands it poses on sensing technologies is presented. This guides the design and modelling process for a frequency modulated continuous waveform (FMCW) radar sensor for use in solving the close proximity problem. Radar offers better all-weather performance than other sensing modalities, but its measurement structure is more complex and often degraded by noise and clutter. The commonly used constant false alarm rate (CFAR) threshold approach performs poorly in applications with frequent extended targets and a short measurement vector, as is the case here. Therefore, a static detection threshold is calculated using measurements of clutter made using the radar, allowing clutter measurements to be filtered out in known environments. The detection threshold is used to develop a heuristic sensor model for occupancy grid mapping. This results in a more reliable representation of the environment than is achieved using the detection threshold alone. A Gaussian mixture extended Kalman probability hypothesis density filter (GM-EK-PHD) is implemented to allow mapping in dynamic environments using the FMCW radar. These methods are used to produce maps of the environment that can be displayed to the driver of a large vehicle to better avoid collisions. The concepts developed in this thesis are validated using simulated and real data from a low-cost 24GHz FMCW radar developed at the Australian Centre for Field Robotics at the University of Sydney

    Multi-sensor based object detection in driving scenes

    No full text
    The work done in this internship consists in two main part. The first part is the design of an experimental platform to acquire data for testing and training. To design the experiments, onboard and onroad sensors have been considered. A calibration process has been conducted in order to integrated all the data from different sources. The second part was the use of a stereo system and a laser scanner to extract the free navigable space and to detect obstacles. This has been conducted through the use of an occupancy grid map representation

    Poisson multi-Bernoulli conjugate prior for multiple extended object filtering

    Full text link
    This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target d-GLMB and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets

    A Review of Sensor Technologies for Perception in Automated Driving

    Get PDF
    After more than 20 years of research, ADAS are common in modern vehicles available in the market. Automated Driving systems, still in research phase and limited in their capabilities, are starting early commercial tests in public roads. These systems rely on the information provided by on-board sensors, which allow to describe the state of the vehicle, its environment and other actors. Selection and arrangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. They are put in context making a historical review of the most relevant demonstrations on Automated Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges for sensing technologies and perception, finishing with an overview of the commercial initiatives and manufacturers alliances that will show future market trends in sensors technologies for Automated Vehicles.This work has been partly supported by ECSEL Project ENABLE- S3 (with grant agreement number 692455-2), by the Spanish Government through CICYT projects (TRA2015- 63708-R and TRA2016-78886-C3-1-R)

    Results of a Precrash Application Based on Laser Scanner and Short-Range Radars

    Get PDF
    International audienceIn this paper, we present a vehicle safety application based on data gathered by a laser scanner and two short-range radars that recognize unavoidable collisions with stationary objects before they take place to trigger restraint systems. Two different software modules that perform the processing of raw data and deliver a description of the vehicle's environment are compared. A comprehensive experimental evaluation based on relevant crash and noncrash scenarios is presented
    • …
    corecore